
J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

Published by Institute of Physics Publishing for SISSA

Received: June 1, 2007

Revised: August 8, 2007

Accepted: August 27, 2007

Published: September 25, 2007

Parton showers with quantum interference

Zoltán Nagy

Theory Division, CERN,

CH-1211 Geneva 23, Switzerland

E-mail: Zoltan.Nagy@cern.ch

Davison E. Soper

Institute of Theoretical Science, University of Oregon,

Eugene, OR 97403-5203, U.S.A.

E-mail: soper@uoregon.edu

Abstract: We specify recursive equations that could be used to generate a lowest order

parton shower for hard scattering in hadron-hadron collisions. The formalism is based

on the factorization soft and collinear interactions from relatively harder interactions in

QCD amplitudes. It incorporates quantum interference between different amplitudes in

those cases in which the interference diagrams have leading soft or collinear singularities.

It incorporates the color and spin information carried by partons emerging from a hard

interaction. One motivation for this work is to have a method that can naturally cooperate

with next-to-leading order calculations.

Keywords: Hadronic Colliders, QCD, Jets.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007114/jhep092007114.pdf

mailto:Zoltan.Nagy@cern.ch
mailto:soper@uoregon.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

Contents

1. Introduction 2

2. A notation for parton showers 7

3. Structure of the calculation 11

3.1 The space of quantum parton states 11

3.2 The density matrix 14

3.3 Statistical states 17

3.4 The resolution scale 18

3.5 Parton shower evolution 20

4. Momentum and flavor mapping 24

4.1 Splitting a final state parton 25

4.2 Combining two final state partons 29

4.3 The integration measure for final state splitting 30

4.4 Splitting an initial state parton 30

4.5 Combining an initial state parton with a final state parton 34

4.6 The integration measure for initial state splitting 35

5. Spin states 35

6. Splitting functions for the quantum states 37

6.1 Definition of the splitting functions vl 38

6.2 Initial state q → q + g splitting, quark scatters 39

6.3 Initial state q → q + g splitting, gluon scatters 41

6.4 Other qqg splittings 43

6.5 Splitting with a ggg vertex 43

6.6 Soft splitting function 45

7. Description of color 45

7.1 Color basis 46

7.2 Parton insertion operators 48

7.3 Color evolution for the quantum states 50

8. Evolution for the statistical states 52

9. The operator HI(t) 58

10. Color evolution of the statistical states 59

11. Soft gluon coherence 61

– 1 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

12. Inclusive evolution 64

13. End of the shower 69

14. Conclusions 71

A. Limit on momentum fraction after splitting 75

B. Counting factors for the density matrix 76

1. Introduction

Parton shower Monte Carlo event generators, such as Herwig [1] and Pythia [2], have

proven to be enormously useful since the development of the main ideas in the 1980s [3 – 5].

These computer programs perform calculations of cross sections according to an approx-

imation to the standard model or some of its possible extensions. Because of the great

success of these programs, it is worthwhile to investigate possible improvements. In this

paper, we propose a theoretical structure for event generators that generalizes the structure

of current programs and allows the elimination of certain approximations used currently.

Parton showers are mostly reflections of QCD interactions. In order to present a

reasonably complete discussion of the QCD issues in a parton shower while keeping the

length of this paper within reasonable bounds, we limit the presentation to QCD and omit

any discussion of how electroweak and beyond-the-standard-model interactions are to be

added to the QCD interactions to make a useful event generator.

What is a parton shower Monte Carlo event generator? Let us consider hadron-hadron

collisions, which is the case relevant for the Tevatron and the Large Hadron Collider. An

experiment will produce a large number of events f , where one can characterize an event as

a list of the momenta and flavors of the final state particles produced. The experiment can

measure a cross section σ[F ] corresponding to an observable1 that assigns to each event f

a number F (f). The relation of the cross section and the function F is

σ[F ] ≈ 1

L
N∑

n=1

F (fn) , (1.1)

where L is the integrated luminosity for an experimental run and the fn are the observed

events. For example, the cross section to produce a Higgs boson and two jets having certain

characteristics is specified by setting F (f) = 1 if f contains a Higgs boson and two jets

having these characteristics and F (f) = 0 otherwise.2

1In order to be subject to reliable calculation in QCD perturbation theory, the function F should have the

property known as infrared safety. However, a parton shower event generator is also useful for observables

that are not infrared safe.
2The case in which F (f) takes values 0 or 1 is the most common, but other possibilities are allowed.

For instance, the energy-energy correlation function in electron-positron annihilation is of the more general

variety.
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A parton shower Monte Carlo event generator calculates this cross section by producing

a large number N of simulated events fn, each with an accompanying weight wn. The

calculated cross section is then

σ[F ] ≈ 1

N

N∑

n=1

wn F (fn) . (1.2)

Most typically, the weights are all equal, so that 1/wn is the simulated luminosity per point

L/N . Our definition of the category of parton shower Monte Carlo event generator includes

the possibility that the weights are complex numbers produced for each event. It is always

possible to throw away the imaginary parts of the wn since we know in advance that the

imaginary part of the sum in eq. (1.2) vanishes, so having complex weights is equivalent to

having real weights that can be positive or negative. This situation occurs in typical event

generators [6, 7] that are based on next-to-leading order perturbation theory.3

In a typical parton shower event generator, the physics is modeled as a process in

classical statistical mechanics. Some number of partons are produced in a hard interac-

tion. Then each parton has a chance to split into two partons, with the probability to

split determined from an approximation to the theory. Parton splitting continues in this

probabilistic style until a complete parton shower has developed.

The parton splitting probability is biggest when the two daughter partons are almost

massless with nearly collinear momenta or when one of their momenta is soft (near p = 0),

or both. There is a simple underlying approximation used: the amplitude for producing

m+1 partons when two of the momenta pi and pj are nearly collinear or one is soft factors

into a splitting function times the matrix element for producing m partons.

The underlying approximation is the factorization of amplitudes in the soft or collinear

limits. However, further approximations are usually added:

1. The interference between a diagram in which a soft gluon is emitted from one hard

parton and a diagram in which the same soft gluon is emitted from another hard

parton is treated in an approximate way, with the “angular ordering” approximation.

2. Color is treated in an approximate way, valid when 1/N2
c → 0 where Nc = 3 is the

number of colors.

3. Parton spin is treated in an approximate way. According to the full quantum ampli-

tudes, when a parton splits, the angular distribution of the daughter partons depends

on the mother parton spin and even on the interference between different mother-

parton spin states. This dependence is typically ignored.

With the use of these further approximations, one can get to a formalism in which the

shower develops according to classical statistical mechanics with a certain evolution oper-

ator.

Our purpose in this paper is to investigate whether one can have a formulation of

parton showers based on the factorization of amplitudes in the soft or collinear limits in

3The recent paper [8] provides an exception to this rule.
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which one does not make the additional approximations enumerated above. For this, one

would have to use quantum statistical mechanics instead of classical statistical mechanics.

It might seem that doing the problem in quantum mechanics is hopelessly complicated.

However, within the soft/collinear factorization approximation, the problem is fairly simple

because it is almost classical. In fact, if partons did not have color or spin, the problem

would be classical (as we discuss in section 2). Thus what we need is a fully quantum

treatment of color and spin. We arrange for this by making use of the quantum density

operator in color ⊗ spin space.

In the subsequent sections, we define evolution equations for the quantum density ma-

trix within the soft/collinear factorization approximation. The matrix evolves in “shower

time” from harder splittings to softer splittings. The iterative solution of these equations

gives σ[F ] in the form of a sum of integrals. To give some idea of the structure, we omit

any mention of hadronization and write the result in a notation that is quite abbreviated

compared to the notation in the body of the paper,

σ[F ] =

∫
dP0 f0

∞∑

N=1

N∏

j=1

(∫
dζj fj

)
F . (1.3)

There is, first of all, an integration (including sums, for discrete variables) over momenta,

flavors, spins, and colors for initial partons that emerge from the hard matrix element

and its complex conjugate. Here we call all of these variables collectively P0, the initial

partonic variables. There is a function f0 that depends on P0 and represents the hard

matrix element at the start of the shower times its complex conjugate. Then there is a

sum over how many splittings, N , there are.4 Next there is an integration over splitting

variables ζj for the jth splitting. The splitting variables include the label telling which

parton split and momentum variables, for which a dimensionless virtuality y, a momentum

fraction z, and an azimuthal angle φ might be used. There are also discrete flavor, color,

and spin variables. At each splitting, there is a set of starting partonic variables, Pj−1

and a set of new partonic variables Pj that are determined by Pj−1 and the splitting

parameters ζj . For each splitting, there is a function fj that depends on Pj−1 and ζj . We

have integrations over the splitting parameters for splittings 1 through N . At the end,

there is the measurement function F that depends on the partonic variables PN reached

after all of the splittings.

The structure of this representation is similar to that in conventional parton showers,

with the functions fj made from splitting functions and Sudakov exponentials that express

the probability for not splitting. There are, however, some important structural differences

that result from not making the approximations 1, 2, and 3 above. Chief among them is

the use of the spin and color variables.

What we develop in this paper is an evolution equation that results in a representation

of σ[F ] as integrals of known functions. Of course, one will want to turn the integrals into

4We have formally iterated the evolution equation an infinite number of times, allowing any number of

splittings. However, we imagine that there is a cutoff on splitting hardness, so that very large values of N

are seldom encountered. Some of our splittings are 1 → 1 self interactions rather than 1 → 2 splittings.
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numbers. How to do that is a question of numerical integration that we leave for future

work. However, it may be useful to sketch how a numerical evaluation might work.

To evaluate σ[F ] numerically, one has to construct the functions involved as described

in the body of this paper and then perform all of the integrations (and sums). In particular,

Monte Carlo integration can be used for many of the integrations. In a numerical method

that is very, very simple, one can choose random points P0 first, according to a density

ρ0. Then one would choose the first splitting variables, ζ1, according to a density ρ1

that is determined by the variables P0. This would determine new partonic variables P1.

Continuing, we choose ζj according to a density ρj that is determined by variables Pj−1

and we use ζj together with Pj−1 to determine Pj . At the end, we use PN as input to the

measurement function F . This process constitutes a Markov chain that produces “events”

with a final state PN . The probability density for getting a final state PN with a given

shower history is ρ0 times the product of the ρj for j ≥ 1. We multiply F (Pn) by a weight

equal to f0/ρ0 times a product of the fj/ρj .

It would be a design goal to choose the ρj to be roughly proportional to the absolute

values of fj. This kind of importance sampling would produce weights that do not vary

over a wide range.

We may note that in a conventional parton shower, the fj are everywhere positive and,

for j ≥ 1, integrate to 1. Thus one can choose the ρ0 to be proportional to f0 and ρj = fj

for j ≥ 1. Then the weight function is a constant. In our case, the factors in fj are not

everywhere positive, so we expect to need weights, which could have either sign.

What we have described above would generate a very conceptually simple numerical

solution to the evolution equation. We expect that one could do much better, particularly

by performing the spin sums not by numerical Monte Carlo summation but by exact

summation. For this, one could adapt the method proposed by Collins [9] and elaborated

by Knowles [10] and by Richardson [11].

We leave issues of the numerical evaluation of the integrals, beyond this simple discus-

sion, for future work.

Some features of the formalism presented here can best be understood by asking what

would happen if we kept only the leading 1/N2
c → 0 limit and averaged over spins every-

where, thus making approximations 2 and 3 above. We would then have a shower based on

gluon emission from color dipoles. With such a picture, the imposition of a cut to enforce

angular ordering (approximation 1) is not needed: interference between gluon emissions

from both halves of a color dipole is already included. The resulting evolution equation

would then be similar to what is implemented as k⊥-showers in Pythia, as described in

ref. [12]. One could also modify the formalism presented here change from k2 as the evolu-

tion variable to the version of k2
⊥ used in Pythia. Then there would be two main features

that differed between the present formalism and Pythia. One difference is in the choice

of splitting functions. The Pythia choice is the Altarelli-Parisi splitting functions, defined

with a certain definition of the momentum fraction z. Our splitting functions are made

from the Feynman diagrams for one off-shell parton producing two on-shell partons with

only a minimal manipulation to separate this part of the diagram from the hard scattering

to which it attaches. The definitions match in limit of collinear splittings, but differ away
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from this limit. The other difference is in the momentum mapping that connects the mo-

mentum space for two initial state partons and m+1 final state partons to that with m final

state partons. We have investigated [13] the possibility of using the Catani-Seymour [14]

mapping and splitting functions, which are commonly used for next-to-leading order cal-

culations. However, we have here adopted a mapping that avoids the use of designated

“spectator” partons that share some of their momenta.5 Pythia uses the Catani-Seymour

momentum mapping for final state splittings and something more complicated for initial

state splittings. We note here the recent paper [16], which explores other possibilities for

both momentum mapping and splitting functions. We also note that S. Schumann and

F. Krauss and, separately, M. Dinsdale, M. Temick, and S. Weinzierl have very recently

implemented the Catani-Seymour dipole subtraction functions and momentum mappings

as the basis for a parton shower. The first results look promising [17].

One of our goals has been to have a formulation that can coexist easily with matching

the probabilities generated by showering to known exact tree level matrix elements, as in

refs. [18] and with using next-to-leading order hard matrix elements as in refs. [6, 7, 19].

However, we leave for future work the analysis of how one can match the showers to the

exact tree level matrix elements or to next-to-leading order hard matrix elements.

One may wonder whether removing the approximations 1, 2, and 3 listed above is

numerically important. We do not have a definitive answer. What we would like to do is

to set up a formalism that does not make approximations beyond the basic soft/collinear

factorization approximation, then (in future work) implement this formalism as a working

algorithm and computer code. One could then make the further approximations separately

or all together and see what difference they make.

We close this introduction with some comments on whether a parton shower Monte

Carlo event generator ought to allow weights for generated events, and in particular nega-

tive weights.

We first note that in a real experiment the relation between the measurement function

F and the measured cross section is a little more complicated than we indicated in eq. (1.1).

Instead, we have

σ[F ] ≈ 1

L
N∑

n=1

1

an
F (fn) , (1.4)

where L is the integrated luminosity for an experimental run in which N total events n

are collected and an is the acceptance for the event resulting from the way the detector

is triggered. For example, if a fraction 10−3 of a certain kind of event is recorded, then

for those events an is 10−3. Thus the weight factors wn/N in eq. (1.2) are analogous to

1/(anL) in the analysis of real data.

We can also examine the effect of weights on the statistical error in eq. (1.2). The

5One motivation for avoiding a special role for designated “spectator” partons is that if one wants to go

to a next-to-leading order splitting kernel or to subtractions for a NNLO perturbative calculation, problems

can arise from a third parton becoming collinear with the designated spectator parton [15].
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expected error E is given by

E2 ∼ 1

N

(
1

N

N∑

n=1

[
wn F (fn) − 〈wF 〉

]2

)
. (1.5)

Here 〈wF 〉 indicates an average. If it is very expensive to use a large N , for instance

because calculating F (fn) requires a full detector simulation, then one would like to make

E2 as small as possible for a fixed N . That suggests not that wn should be constant, but

that wn F (fn) should be approximately constant for the observables F of most interest.6

It is never possible to make wn F (fn)/〈wF 〉 = 1 for all events, but one does not want to

have lots of events for which this ratio is much smaller than 1 nor any events for which the

ratio is much bigger than 1. Having events for which wn F (fn)/〈wF 〉 ∼ −1 is not a good

thing, but, since | − 1| is not much larger than 1, it is not really damaging from the point

of view of avoiding large statistical errors.

Evidently having weights that are real numbers of either sign, or complex numbers,

does not make it impossible to apply eq. (1.2). It does, however, make the analysis a little

more complicated. However, we believe that that the added complication does not present

a serious problem.

Preview. Since this is a rather lengthy paper, some preview of what is in it may be help-

ful. Section 2 contains an introduction to the notation we use. This notation is, we think,

useful for thinking about a variety of formulations of the parton shower idea. We present

it in the context of a simple scalar field theory that is free from a lot of the complications

of quantum chromodynamics (QCD). We then turn to QCD, with its complications. We

present in section 3 the structure that we propose for a parton shower that contains quan-

tum interference. In order to present this structure in just a few pages, we leave for later

sections most of the detailed definitions. The first of these, the momentum and flavor map-

ping, is covered in section 4. Then section 5 covers spin. This provides enough background

to present the splitting functions for the quantum amplitudes in section 6. The description

of color, which is rather more complicated than that of spin, is presented in section 7.

We are then able to specify the shower evolution operator in sections 8 and 9. We follow

this with discussions of two interesting issues, the evolution of color in section 10 and soft

gluon coherence in section 11. We analyze the structure of the functions that appear in the

Sudakov exponent in section 12. Eventually shower evolution stops and a hadronization

model is inserted. We discuss this in section 13. We present some concluding remarks in

section 14. There are two appendices that deal with certain technical issues.

2. A notation for parton showers

Starting in the next section, we present a formulation for parton showers in QCD hard

scattering events in hadron-hadron collisions, taking into account the complexities intro-

duced by spin and color correlations and by soft, wide angle gluon emissions in addition

6Thus, if our primary interest were in the high PT tail of a jet PT distribution, we would not want to

use most of the available computer time to generate low PT events. Rather, we would want to generate few

low PT events, giving each of them a high weight to compensate.
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to collinear splittings. In order to do this, we use a mathematical language that helps

to organize the algorithm. Alas, the complexities of the real physical situation make the

needed construction a bit subtle. Therefore, in this section we first introduce some of the

needed language in a simpler situation. The notation introduced here will be used again

for QCD in the subsequent sections.

Consider the process e+e− → hadrons in a world in which hadrons consist of just one

kind of massless scalar particle, which has no color. The e+e− annihilation produces a pair

of virtual scalar particles through an interaction that we need not specify. In the evolution

of the hadronic state, we can still have collinear singularities similar to those found in

QCD if the theory consists of φ3 theory in six dimensional space-time. The cross section

to measure an observable F can be written as

σ[F ] =
∑

m

1

m!

∫ [
d{p}m

]
|M({p}m)|2F ({p}m) . (2.1)

Here there is a sum over the number m of produced particles, {p}m = {p1, . . . , pm}, and

∫ [
d{p}m

]
≡

m∏

i=1

{∫
d6pi

(2π)6
2πδ+(p2

i )

}
(2π)6δ

(
P0 −

m∑

i=1

pi

)
, (2.2)

with P0 = (
√

s,~0). The function M({p}m) gives the matrix element to produce m particles

with momenta {p}m, while F ({p}m) describes the measurement to be done.

We want to describe this using an algorithm that approximates |M({p}m)|2 based on

|M({p}m)|2 for m = 2 and the subsequent generation of the rest of the particles based on

a narrow angle approximation for one particle to split into two. This is to be done using

a Monte Carlo simulation in which the system evolves from 2 particles to many particles

as a simulation time t progresses from t = 0 to a large value, at which the simulation is

terminated. There are various possibilities for the physical meaning of the time t. We will

take it that a splitting l → i + j occurs at time t = log(Q2
0/(2pi · pj)), where Q2

0 is the

hardness scale of the hard interaction with which we start.

At each stage of this simulation, let the cross section to have m particles with momenta

{p}m be ρ({p}m, t). Summing over the number of particles and integrating over momenta

gives the total cross section,

σT =
∑

m

1

m!

∫ [
d{p}m

]
ρ({p}m, t) . (2.3)

At the final time, tf , the value of the measurement function is

σ[F ] =
∑

m

1

m!

∫ [
d{p}m

]
ρ({p}m, tf)F ({p}m) . (2.4)

The possible functions ρ (at a given time t) form a vector space, so that ρ at time

t can be considered to be a vector
∣∣ρ(t)

)
. We use rounded brackets here. The notation∣∣ψ

〉
is reserved for a quantum state, while

∣∣ρ
)

denotes a state in the sense of statistical

– 8 –
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mechanics. We therefore call it a statistical state. The inner product is7

(
A

∣∣B
)

=
∑

m

1

m!

∫ [
d{p}m

]
A({p}m)B({p}m) . (2.5)

We can define basis vectors
∣∣{p}m

)
in this space so that

ρ({p}m, t) =
(
{p}m

∣∣ρ(t)
)

. (2.6)

With these definitions, there is a completeness relation

1 =
∑

m

1

m!

∫ [
d{p}m

] ∣∣{p}m

)(
{p}m

∣∣ . (2.7)

The measurement function F can also be considered to be a vector,
(
F

∣∣. Thus

σ[F ] =
(
F

∣∣ρ(tf)
)

. (2.8)

There is a special vector
(
1
∣∣ with

(
1
∣∣{p}m

)
= 1 . (2.9)

This vector represents the totally inclusive measurement function corresponding to the

total cross section,

σT =
(
1
∣∣ρ(t)

)
. (2.10)

Now we are ready to discuss the evolution of the statistical state. We take the evolution

to be given by a linear operator U(t, t′), with

∣∣ρ(t)
)

= U(t, t′)
∣∣ρ(t′)

)
. (2.11)

Here U(t, t) = 1. These operators have the group composition property

U(t3, t2)U(t2, t1) = U(t3, t1) . (2.12)

The class of evolution operators that we will use is defined by two operators. The first

is an infinitesimal generator of evolution or hamiltonian, HI(t). We can specify HI(t) by

giving its action on an arbitrary state
∣∣ρ

)
,

HI(t)
∣∣ρ

)
. (2.13)

In a lowest order shower, the operator HI(t) describes parton splitting, changing a state

with m particles to one with m+1 particles. One of the particles in {p}m, say particle l, is

removed and replaced by two, with momenta p̂l and p̂m+1. The quantum amplitude after

the splitting is approximately

M({p̂}m+1) ≈ M({p}m) × g

2p̂l ·p̂m+1
. (2.14)

7Note that there is no * here.
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Figure 1: Illustration of eq. (2.18). The wide ovals represent the evolution operator U while the

narrow ovals represent the no change operator N , which provides the Sudakov exponentials, and

the small circle is a parton splitting. Shower time t runs from left to right.

Here, to precisely define the right-hand side, one needs to redefine the momenta so that the

mother parton has a momentum pl ≈ p̂l + p̂m+1 that is nevertheless on-shell, p2
l = 0. Thus

the momenta {p}m are functions of the momenta {p̂}m+1. We omit a discussion here of the

various ways to define this momentum mapping. More important for now is the idea that

the quantum matrix element factorizes in the form (2.14) when 2p̂l · p̂m+1 is much smaller

than any of the dot products among the momenta in {p}m. This factorization is at the

heart of the reason why parton shower Monte Carlo programs give useful approximations.

For the statistical splitting function in eq. (2.13), we need the square of the quantum

amplitude. Thus we want

(
{p̂}m+1

∣∣HI(t)
∣∣ρ

)
=

∑

l

δ

(
t − log

(
Q2

0

2p̂l ·p̂m+1

))[
g

2p̂l ·p̂m+1

]2 (
{p}m

∣∣ρ
)

. (2.15)

We have inserted the definition of the Monte Carlo time, t, that we here imagine using. For

our present pedagogical purposes, the details of the definition of HI(t) are not so important.

What is important is that it reflects the factorization (2.14).

The second operator used in the construction of U(t′, t) is a no-change operator N (t, t′)

with N (t, t) = 1 and

N (t3, t2)N (t2, t1) = N (t3, t1) . (2.16)

The no-change operator leaves the basis states unchanged except for multiplying each of

them by an eigenvalue ∆:

N (t′, t)
∣∣{p}m

)
= ∆(t′, t; {p}m)

∣∣{p}m

)
. (2.17)

The evolution operator U is expressed in terms of the hamiltonian and the no-change

operators by (see figure 1)

U(t3, t1) = N (t3, t1) +

∫ t3

t1

dt2 U(t3, t2)HI(t2)N (t2, t1) . (2.18)

This equation is interpreted as saying that either the system evolves without splitting from

t1 to t3, or else it evolves without splitting until an intermediate time t2, splits at t2, and

then evolves (possibly with further splittings) from t2 to t3.
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We need one more ingredient. We wish to construct the evolution so that it leaves the

total cross section invariant,
(
1
∣∣U(t′, t)

∣∣ρ
)

=
(
1
∣∣ρ

)
. This should hold for every state

∣∣ρ
)
, so

(
1
∣∣U(t′, t) =

(
1
∣∣ . (2.19)

This assumption defines what N (t3, t1) has to be. Multiply eq. (2.18) on the left by
(
1
∣∣

and on the right by
∣∣{p}m

)
. Then, using eqs. (2.19) and (2.17) we have

1 = ∆(t3, t1; {p}m) +

∫ t3

t1

dt2
(
1
∣∣HI(t2)

∣∣{p}m

)
∆(t2, t1; {p}m) . (2.20)

If we now differentiate with respect to t3, we get

d

dt3
∆(t3, t1; {p}m) = −

(
1
∣∣HI(t3)

∣∣{p}m

)
∆(t3, t1; {p}m) . (2.21)

The solution of this with the initial condition ∆(t1, t1; {p}m) = 1 is

∆(t3, t1; {p}m) = exp

(
−

∫ t3

t1

dτ
(
1
∣∣HI(τ)

∣∣{p}m

))
. (2.22)

This result has a simple interpretation. The quantity
(
1
∣∣HI(τ)

∣∣{p}m

)
is the total proba-

bility for one of the partons in the state {p}m to split at time τ . The exponential, known

as the Sudakov factor, is the probability that none of these partons splits between t1 and

t3.

This operator notation provides a convenient way to express the essence of standard

shower Monte Carlo algorithms. Different algorithms differ in how the evolution variable t

is defined and in exactly what the splitting operator HI(t) is.

At its heart, the shower Monte Carlo idea is that soft interactions factor from hard

interactions in QCD. After being produced in a hard interaction, partons in QCD travel

a long way before undergoing much softer interactions such as splitting. What subsequent

splitting does occur does not much change the basic hard matrix element for producing

(almost) on-shell partons. There are some complications, however. On shell partons carry

both spin and color. Furthermore, soft gluons can transmit color changes over long dis-

tances. In the subsequent sections, we will extend the meaning of the symbols used here

so as to accommodate spin and color.

3. Structure of the calculation

In this section we introduce notational conventions and a general structure for the calcu-

lation that we will use later in the paper.

3.1 The space of quantum parton states

In order to describe showers, we need a notation for the description of quantum states

consisting of two initial state partons and m final state partons. The partons are labeled by

an index such as i that takes values “a” or “b” for the initial state partons and 1, 2, . . . ,m

– 11 –
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for the final state partons. Each parton is described by a momentum p, a flavor f ∈
{g,u, ū,d, d̄, . . .}, a spin index s and a color index c. We denote the quantum numbers of

such a state by

{p, f, s, c}m ≡ {ηa, a, sa, ca; ηb, b, sb, cb; p1, f1, s1, c1; . . . ; pm, fm, sm, cm} . (3.1)

Here there is a special notation with respect to the incoming partons. The momentum

fractions of the incoming partons are denoted by ηa and ηb, defined below. We call the

flavor of parton “a” simply a and we call the flavor of parton “b” simply b. This notation

is useful for designating the parton distribution functions, fa/A(ηa, µ
2
F) and fb/B(ηb, µ2

F).

For the purpose of describing backward evolution of the initial state partons, we will often

need the antiflavors of the incoming partons. We use fa and fb for these,

fa = − a ,

fb = − b .
(3.2)

Here our notation is −u = ū, −ū = u, −g = g, etc.

The final state partons are always on-shell. Our kinematics allows parton masses, with

p2
j = m2(fj) . (3.3)

To describe the momenta of the initial state partons, we start by defining pA and pB to be

massless approximations to the momenta of the two incoming hadrons

p2
A = 0 ,

p2
B = 0 ,

2pA ·pB = s .

(3.4)

The initial state partons are on-shell. In general, they can have masses but, with a small

modification of the notation, their masses could be set to zero.8 In any case, we take the

initial state partons to have zero transverse momentum. Thus

pa =ηapA +
m2(fa)

ηas
pB ,

pb =ηbpB +
m2(fb)

ηbs
pA .

(3.5)

This defines the momentum fractions ηa and ηb.

In the event that we include parton masses, the hardness scale Q2
0 at which the parton

shower is initiated should be much bigger than the mass of any parton that is included

as a possible constituent of the incoming hadrons. For example, if the hard process were

t+ t̄ production near threshold, then top quarks should not be used as possible initial state

partons. Thus we demand that

Q2
0 > 4m2

H , (3.6)

8There are several possibilities for the treatment of masses of initial state partons and there are some

subtle issues associated with the choice. We mention some of these issues in section 14.
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where mH is the mass of the heaviest quark that is included as an initial state parton,

typically the b quark. In any reasonable application of the formalism of this paper, the

“>” here will be “≫.” Equation (3.6) suffices to make certain kinematic formulas in the

paper work. At any stage in the shower, we define pa + pb = Q. At the first step, the

starting hard scattering, with a sensible definition of the starting hardness scale we must

have Q2 ≥ Q2
0. The values of Q2 increase as the shower develops. Thus at any stage we

will have

(pa + pb)
2 > 4m2

H , (3.7)

We will impose a kinematic restriction on the momentum fractions,

m2(fb)

ηbs
< ηa ,

m2(fa)

ηas
< ηb . (3.8)

These limits require that the momentum in the system in the direction of pA comes mainly

from parton “a,” and the same for pA ↔ pB, a ↔ b. We can be sure that both conditions

hold by requiring

ηaηbs > m2
H . (3.9)

The reason for imposing this condition is as follows. Given eq. (3.5), there are two choices

for ηaηbs that yield the same value of (pa + pb)
2. As long as condition (3.7) holds, the

larger of the two choices for ηaηbs satisfies eq. (3.9). Imposing eq. (3.9) eliminates the

other solution, in which parton “a” moves in approximately the pB direction and parton

“b” moves in approximately the pA direction, creating a large value for (pa + pb)
2.

The upper limit on ηa and ηb is 1. We note here that this is an approximation. To

discuss this, let nA and nB be dimensionless lightlike vectors in the directions of pA and

pB respectively, normalized to nA · nB = 1. Then consider, for example, the limit on ηa.

The total momentum in the direction of nA of the final state particles is

(pa + pb) · nB =

[
ηa +

m2(fb)

ηbs

]
pA · nB . (3.10)

This can be bigger than the available momentum pA ·nB if ηa is very close to 1. A remedy

for this would be to redefine pA and pB in our formulas. Suppose that the exact hadron

momenta are PA and PB. Then if we put

pA = λ PA · nB nA ,

pB = λ PB · nA nB ,
(3.11)

then there is a value of λ that makes (pA + pB)2 = (PA + PB)2. By taking a value of λ

that is a little smaller than this, one can ensure that the momentum in the final state in

the directions of nA and nB is not more than was present in the initial state. It is this

momentum that is available for the “underlying event.” With this adjustment, the value

of s in our formulas is a little less than the true c.m. squared energy, (PA + PB)2.

Our notation with respect to spin and color is meant to be flexible. A standard helicity

basis will work for spin. For color, we begin with a straightforward basis in which each

parton i has a color index ci that can take values 1,2,3 for quarks and antiquarks and
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1,. . . ,8 for gluons. Later, we will want to consider the subspace of the whole color space in

which the parton state is a singlet under the SU(3) color group. We will choose a basis for

this subspace. Using this basis, we will still have labels that we can call {c}m, but the new

labels will describe the color links among the partons rather than individual color indices

ci for the individual partons. The notation {p, f, c, s}m is thus supposed to include the

possibility of any representation of the colors of the m + 2 partons.

3.2 The density matrix

A matrix element used in the computation of a cross section can be thought of as having

the form of a function of the momenta and flavors that carries indices for spin and color,

M({p, f}m)ca,cb,c1,...,cm
sa,sb,s1,...,sm

. (3.12)

Here we denote the functions M for different numbers m of final state partons by the same

name, simply M({p, f}m) rather than Mm({p, f}m). The array M can be thought of as a

vector in spin and color space,

∣∣M({p, f}m)
〉

. (3.13)

The inner product
〈
M ′

∣∣M
〉

denotes multiplying M ′∗ by M and summing over the spins

and colors.

An observable F can be specified by giving a set of functions F ({p, f}m) that are linear

operators on the color-spin space. (In many important cases, F ({p, f}m) is a function times

the unit operator on color-spin space. If F is be simply made from theta functions defining

final state cuts, then σ[F ] is the cross section to find the final state partons within the

cuts.) With this notation the cross section for an observable F takes the form9

σ[F ] =
∑

m

1

m!

∫ [
d{p, f}m

] fa/A(ηa, µ
2
F) fb/B(ηb, µ2

F)

4nc(a)nc(b) 2ηaηbpA ·pB

×
〈
M({p, f}m)

∣∣F ({p, f}m)
∣∣M({p, f}m)

〉
.

(3.14)

Here the functions f are parton distribution functions while nc(a) is the number of colors

that a parton of flavor a can have, Nc = 3 for a quark or antiquark, N2
c −1 = 8 for a gluon.

The factor 4nc(a)nc(b) turns the sum over spins and colors for the initial state partons

into an average over spins and colors. We have indicated the appropriate integrations over

9This formula contains a parton flux factor 2ηaηbpA · pB that corresponds to massless partons. The flux

factor for scattering of free massive particles is more complicated. However, (pa +pb)
2 is always bigger than

the initial hard scale Q2
0 and the formalism of this paper is valid only when Q2

0 is much larger than the

masses of any initial state partons. For this reason, we use the flux factor for massless parton scattering.
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momenta by

∫ [
d{p, f}m

]
g({p, f}m) ≡

m∏

i=1





∑

fi

∫
d4pi

(2π)4
2πδ+(p2

i − m2(fi))





∑

a

∫ 1

0
dηa

∑

b

∫ 1

0
dηb

× (2π)4δ

(
pa + pb −

m∑

i=1

pi

)
θ
(
m2

H < ηaηbs
)

× g({p, f}m) .

(3.15)

Here g({p, f}m) is an arbitrary function.

The final state particles carry labels i ∈ {1, . . . ,m}. Then particle i has momentum,

flavor, spin, and color given by {pi, fi, si, ci}. One can arrange the definitions such that the

amplitude M is symmetric under interchange of the labels. However, we do not necessarily

do so. Instead, the notation allows for a general labeling scheme.10 A measurement function

F must be symmetric under interchange of labels, since the labels are not physical. Two

amplitudes M that become the same if the labels are symmetrized are equivalent.

We will find it useful to rewrite σ[F ] in the form of a trace over the spin and color

space,

σ[F ] =
∑

m

1

m!

∫ [
d{p, f}m

]
Tr{ρ({p, f}m)F ({p, f}m)} , (3.16)

where

ρ({p, f}m) =
∣∣M({p, f}m)

〉fa/A(ηa, µ
2
F )fb/B(ηb, µ2

F )

4nc(a)nc(b) 2ηaηbpA ·pB

〈
M({p, f}m)

∣∣ . (3.17)

Thus ρ is the density operator in color⊗ spin space. It is illustrated in figure 2. The density

operator, for momentum as well as spin, is widely used as the basis of quantum statistical

mechanics. It was introduced for the spin space in parton showers by Collins [9] and is

used in Herwig for the heavy partner particles in supersymmetry [11].

We can expand ρ({p, f}m) in basis states
∣∣{s, c}m

〉
for the color⊗ spin space,

ρ({p, f}m) =
∑

s,c

∑

s′,c′

∣∣{s, c}m

〉
ρ({p, f, s′, c′, s, c}m)

〈
{s′, c′}m

∣∣ . (3.18)

Here ρ({p, f, s′, c′, s, c}m) is a function that depends on the momenta and flavors {p, f}m,

the labels {s, c}m for the quantum “ket” state and the labels {s′, c′}m for the conjugate

quantum “bra” state. We denote the state labels collectively by {p, f, s′, c′, s, c}m. Thus

ρ({p, f, s′, c′, s, c}m) a function giving the matrix elements of the density matrix. We find

it convenient to base our treatment on this function.

10Just to take a trivial example, in a uūg state, the label 1 might be assigned to the up quark, 2 to the

anti-up quark and 3 to the gluon. Of course, it will not work in general to use the flavors as labels because

one can have two final state partons with the same label.
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a

b

1

2

3

1

2

3

a

b

Figure 2: Illustration of a contribution to ρ, eq. (3.17). The Feynman graph on the left is a

contribution to
∣∣M({p, f}m)

〉
and the Feynman graph on the right is a contribution to

〈
M({p, f}m)

∣∣.
The factor with parton distributions is not illustrated. The momenta and flavors of the labeled

partons match between
∣∣M({p, f}m)

〉
and

〈
M({p, f}m)

∣∣, but the partons on the left have colors and

spins {s, c}m while those on the right have possibly different colors and spins {s′, c′}m. Additionally,

ρ can contain quantum interference between different graphs, as illustrated here. We imagine that

eventually the partons will evolve to form a final state in the middle and an initial state on the left

and right.

Later, we will choose an orthonormal basis for the spin space, so that

〈
{s′}m

∣∣{s}m

〉
= δ

{s′}m

{s}m
. (3.19)

For the color space, we will find it convenient to use a basis in which
〈
{c}m

∣∣{c}m

〉
is

approximately but not exactly 1 and where
〈
{c′}m

∣∣{c}m

〉
is not generally zero for {c}m 6=

{c′}m. With a non-orthogonal basis, we need to be a little careful about the notation.

Suppose that we expand a vector in such a basis,

∣∣ψ
〉

=
∑

{c}m

∣∣{c}m

〉
a({c}m) . (3.20)

A convenient representation for the expansion coefficients a({c}m) is obtained by taking

matrix elements with elements of the dual basis
∣∣{c}m

〉
D

defined11 by

D

〈
{c′}m

∣∣{c}m

〉
= δ

{c′}m

{c}m
. (3.21)

Using the dual basis we can write

D

〈
{c}m

∣∣ψ
〉

= a({c}m) . (3.22)

The expansion of any vector in the basis
∣∣{c}m

〉
can conveniently be obtained directly by

using the completeness relation

1 =
∑

{c}m

∣∣{c}m

〉
D

〈
{c}m

∣∣ . (3.23)

11Readers familiar with general relativity can think of
˙

{c}m

˛

˛a
¸

as the covariant components ac of a

and
D

˙

{c}m

˛

˛a
¸

as the contravariant components ac. One can lower indices using the metric tensor gcc′ ,

analogous to
˙

{c}m

˛

˛{c′}m

¸

. The inverse matrix
D

˙

{c}m

˛

˛{c′}m

¸

D
is analogous to gcc′ .
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If we want to expand a bra vector in the basis
〈
{c}m

∣∣ we can use the completeness relation

1 =
∑

{c}m

∣∣{c}m

〉
D

〈
{c}m

∣∣ . (3.24)

This is particularly useful with respect to operators. Let O be a linear operator on the color

space. If
∣∣ψ

〉
has expansion coefficients a({c}m) defined by eq. (3.20) and

∣∣ψ′
〉

= O
∣∣ψ

〉
has

expansion coefficients a′({c′}m) then O is conventionally described by the matrix defined

by

a′({c′}m) =
∑

{c}m

o({c′}m, {c}m) a({c}m) . (3.25)

We can write this as

o({c′}m, {c}m) =
D

〈
{c′}m

∣∣O
∣∣{c}m

〉
. (3.26)

3.3 Statistical states

The set of functions ρ({p, f, s′, c′, s, c}m) forms a vector space, which we can call the statis-

tical state space (as distinct from the quantum state space). We can call the vector corre-

sponding to this function simply
∣∣ρ

)
. Note the rounded brackets instead of angle brackets

that we use for quantum states, as in
∣∣ψ

〉
. We can define basis vectors

(
{p, f, s′, c′, s, c}m

∣∣
for the statistical state space12 so that

ρ({p, f, s′, c′, s, c}m) =
(
{p, f, s′, c′, s, c}m

∣∣ρ
)

. (3.27)

There are also ket basis vectors such that the completeness relation for the basis states is

1 =
∑

m

1

m!

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

)(
{p, f, s′, c′, s, c}m

∣∣ , (3.28)

where
[
d{p, f, s, s′, c, c′}m

]
is an extension of the integration measure eq. (3.15)

∫ [
d{p, f, s′, c′, s, c}m

]
≡

∫ [
d{p, f}m

] ∑

sa,s′a,ca,c′a

∑

sb,s′b,cb,c′b

m∏

i=1





∑

si,s′i,ci,c′i



 . (3.29)

The corresponding inner product of basis states is

(
{p, f, s′, c′, s, c}m

∣∣{p̃, f̃ , s̃′, c̃′, s̃, c̃}m̃

)
= δm,m̃ δ({p, f, s′, c′, s, c}m; {p̃, f̃ , s̃′, c̃′, s̃, c̃}m) ,

(3.30)

where the function δ is a generalization of the ordinary delta-function that is defined by

1

m!

∫ [
d{p, f, s′, c′, s, c}m

]
δ({p, f, s′, c′, s, c}m; {p̃, f̃ , s̃′, c̃′, s̃, c̃}m) h({p, f, s′, c′, s, c}m)

= h({p̃, f̃ , s̃′, c̃′, s̃, c̃}m) .

(3.31)

12More precisely, the bra vectors
`

F
˛

˛ are vectors in the dual space to the ket vectors
˛

˛ρ
´

, that is the space

of linear functions on the vectors
˛

˛ρ
´

.
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Here h is any well behaved function of the variables indicated, defined on the integration

surface.

Let us define a vector corresponding to a measurement function F using13

(
F

∣∣{p, f, s′, c′, s, c}m

)
=

〈
{s′, c′}m

∣∣F ({p, f}m)
∣∣{s, c}m

〉
. (3.32)

Then, using the completeness relation (3.28), the cross section (3.16) corresponding to a

measurement function F can be expressed using eqs. (3.18) and (3.27) as

σ[F ] =
(
F

∣∣ρ
)

. (3.33)

In the case that F consists of a function F ({p, f}m) times a unit operator in spin-color

space, the inner product
(
F

∣∣ρ
)

is

(
F

∣∣ρ
)

=
∑

m

1

m!

∫ [
d{p, f, s′, c′, s, c}m

]
F ({p, f}m)

〈
{s′}m

∣∣{s}m

〉〈
{c′}m

∣∣{c}m

〉

× ρ({p, f, s′, c′, s, c}m) .

(3.34)

3.4 The resolution scale

We now need to introduce a resolution scale into our equations. We first discuss the reso-

lution scale of the observable. In eq. (3.33), let us suppose that the observable represented

by the functions F ({p, f}m) is infrared safe. To be precise about what this means, we first

demand that the functions F ({p, f}m) be smooth functions of the momentum variables and

that they be invariant under label interchanges. Then we consider a list of parton variables

{p̂, f̂}m+1 for m+1 partons and suppose that p̂m+1 becomes collinear with the momentum

p̂l of parton l. Then we can consider the list of parton momenta {p, f}m where pj = p̂j

and fj = f̂j for j 6= l while pl = p̂m + p̂l and fl = f̂m + f̂l (with the obvious definition

of adding flavors). That is, the partons with variables {p̂, f̂}m+1 could have arisen from

partons with variables {p, f}m by the collinear splitting of parton l into new partons with

labels l and m + 1. Then infrared safety requires that

F ({p̂, f̂}m+1) → F ({p, f}m) (3.35)

in the limit. This should also hold if parton m + 1 becomes soft, p̂m+1 → 0. It should also

hold with a suitable adjustment of the notation for a splitting of one of the initial state

partons. This is, so far, just the standard definition of infrared safety. It allows us to have

perturbatively calculable cross sections. Now let us extend the definition to include a scale.

We can say that the observable is infrared safe at scale µ2 if

F ({p̂, f̂}m+1) ≈ F ({p, f}m) (3.36)

when |2p̂m+1 ·p̂l| < µ2. To be really precise, we should specify how good this approximation

has to be, but this will not matter for our purposes. Strictly speaking an “infrared safe

13Note that this equation for the measurement function has a different structure from the equation used

to define the statistical state vector
˛

˛ρ
´

, ρ({p, f}m) =
˛

˛{s, c}m

¸`

{p, f, s′, c′, s, c}m

˛

˛ρ
´˙

{s′, c′}m

˛

˛.
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observable” without further qualification is one that is infrared safe at any scale, no matter

how small. However, what is usually meant is that it is infrared safe at a scale not much

smaller than the scale Q2
0 of the hardest interaction in the problem. What we want to do

here is to specify the splitting scale at which the observable is sensitive to the splitting.

That scale could be much smaller than Q2
0.

Now we introduce the concept of the density operator ρ evaluated at resolution scale

µ2. The idea is that interactions with scales greater than µ2 are included in
∣∣M

〉〈
M

∣∣ while

interactions with scales smaller than µ2 are integrated out (for final state interactions) or

included in the parton distributions (for initial state interactions).14 We can describe this

in a rough way as follows. In each cut Feynman diagram, each integration region for final

state partons that produces a collinear or soft divergence can be described as a region in

which some group of partons with labels i become collinear to a given direction of a mother

parton or some become soft, so that (
∑

i pi)
2 → 0. Divide this region into subregions with

(
∑

i pi)
2 < µ2 and (

∑
i pi)

2 > µ2. In the (
∑

i pi)
2 < µ2 region we can combine the partons i

into a single effective parton for purposes of calculating the observable. That is, the partons

i are “unresolved.” This leads to a free integration over this region using a constant F for

fewer partons. Adding these real emission integrals to the corresponding virtual diagrams

and counterterms from the parton distributions gives a finite result containing logarithms

of µ2/Q2
0.

A more intuitive way of thinking about this is to imagine writing the Feynman diagrams

in a coordinate space representation, in which we integrate over the positions xµ
i of the

interaction vertices relative to the position of the hard interaction, which is determined to

within 1/Q2
0. Then we can restrict these integrations to |x2

i | < 1/µ2 before integrating over

the final state momenta.

In order that the parton distributions in eq. (3.17) include initial state interactions at

all scales smaller than µ2, the factorization scale µ2
F at which the parton distributions are

evaluated should be µ2.

With this meaning of ρ evaluated at resolution scale µ2,
(
F

∣∣ρ
)

is invariant under

µ2 → µ2 + δµ2 as long as F is infrared safe at a scale equal to µ2 or larger. However, if

one looks at
∣∣ρ

)
with a resolution scale smaller than µ2 then

(
F

∣∣ρ
)

does see the effect of

changing µ2.

Our object in this paper is to construct an approximate version of
∣∣ρ

)
as a function

of the resolution scale. The idea is to construct
∣∣ρ

)
using a parton shower, starting from

µ2 = Q2
0 and evolving to smaller values of µ2, down to a final infrared cutoff. This intuitively

appealing idea has been inherent in the idea of a parton shower since the earliest days.

It would be very useful to have a precise field theoretic definition of
∣∣ρ

)
as a function of

resolution scale. However, this is beyond our scope in this paper.

One finds that the logarithm of the resolution scale µ2 is more useful as a variable than

µ2 itself. Therefore we define Monte Carlo time t by

µ2 = Q2
0 e−t (3.37)

14This is the idea of the standard factorization theorem [20]. However, we here go beyond anything that

has been proved.
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and write the density operator with this resolution scale as
∣∣ρ(t)

)
. Then also the parton

distributions are evaluated at factorization scale

µ2
F = Q2

0 e−t . (3.38)

3.5 Parton shower evolution

We are now prepared to set up a quite general framework for describing a parton shower.

We take the framework as a set of axioms that we hope are reasonably intuitive. Later, we

relate the operators that occur to the structure of Green functions at tree level in QCD.

We use the evolution variable t that specifies the resolution scale of ρ according to

eq. (3.37). Thus t starts at zero and increasing t corresponds to decreasing virtuality.

One stops evolution at an infrared cutoff tf at which the use of an evolution based on

perturbation theory is no longer appropriate. For instance, tf might correspond to a 1 GeV2

virtuality. The evolving shower is represented by a state
∣∣ρ(t)

)
that begins with an initial

state
∣∣ρ(0)

)
. The evolution is given by a linear operator U(t, t′), with

∣∣ρ(t)
)

= U(t, t′)
∣∣ρ(t′)

)
. (3.39)

Here U(t, t) = 1. These operators have the group composition property

U(t3, t2)U(t2, t1) = U(t3, t1) . (3.40)

The class of evolution operators that will use is defined by two operators, HI(t) and

V(t), according to the differential equation

d

dt
U(t, t′) = [HI(t) − V(t)]U(t, t′) , (3.41)

with initial condition U(t, t) = 1.

The first operator, HI(t), represents parton interactions and, in general, changes the

number of partons and their momenta. We specify HI(t) by giving its matrix elements

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m′

∣∣HI(t)
∣∣{p, f, s′, c′, s, c}m

)
. (3.42)

In a lowest order shower, which we consider in this paper, the operator HI(t) describes

1 → 2 parton splitting, changing a state with m final state partons to one with m + 1 final

state partons.

The second operator that controls evolution, V(t), describes the effect of virtual graphs

and the “unresolved” part of real emission graphs. In a lowest order shower, we do not

account for the virtual graphs exactly, but rather account for only the infrared singular

part of the virtual graphs, which can be deduced from the real emission graphs. That is,

V(t) is determined from HI(t). The operator V(t) does not change the number of partons

or their flavors or spins, but can change their color states.

We construct the shower algorithm in such a way that it conserves probability in a

certain sense. If we were dealing with e++e− → hadrons, we would demand that the devel-

opment of the shower does not change the total cross section. For hadron-hadron collisions,
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the total cross section does not have a well defined perturbative expansion. However, if we

start with a state
∣∣ρ(0)

)
that is “hard” in the sense that

(
{p, f, s′, c′, s, c}m

∣∣ρ(0)
)

is non-zero

only for parton configurations with a large transverse energy, then we can demand that as

this state evolves into the shower, the contribution from
∣∣ρ(t)

)
to the total cross section

does not change. The observable that measures the total cross section is

F1({p, f}m) = 1 . (3.43)

We will call the vector corresponding to F1 simply
(
1
∣∣. Using eq. (3.32), the inner product

of
(
1
∣∣ with a basis state is

(
1
∣∣{p, f, s′, c′, s, c}m

)
=

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣{c}m

〉
. (3.44)

The statement that shower evolution leaves contributions to the total cross section

invariant is (
1
∣∣U(t′, t)

∣∣ρ
)

=
(
1
∣∣ρ

)
(3.45)

for any (suitably hard) state
∣∣ρ

)
. This requirement leads to a relation between the matrix

elements of V, and HI. To derive this relation we multiply eq. (3.41) on the left by
(
1
∣∣ and

on the right by
∣∣ρ

)
. After using eq. (3.45), we get

0 =
(
1
∣∣[HI(t) − V(t)]U(t, t′)

∣∣ρ
)

. (3.46)

Since this holds for any suitably hard state
∣∣ρ

)
we have

0 =
(
1
∣∣[HI(t) − V(t)] . (3.47)

We multiply on the right by
∣∣{p, f, s′, c′, s, c}m

)
to obtain

(
1
∣∣V(t)

∣∣{p, f, s′, c′, s, c}m

)
=

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
. (3.48)

At this point, we need to discuss the structure of the parton splitting operator HI. In

subsequent sections, we derive the form of HI(t) based on the structure of QCD tree level

matrix elements in the limit that two of the m+1 partons become massless and collinear, one

becomes massless and collinear with one of the beam directions, or one (a gluon) becomes

soft. In this limit, the matrix elements take a factored form, hard ⊗ (soft & collinear).

This factorization leads to the definition15 of HI(t) in section 9. At the moment, what we

need is the structure of
(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
, which represents the inclusive splitting

probability at splitting scale t. We will find

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
= 2

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
, (3.49)

where the function h(t, {p, f}m) is given in section 12, eq. (12.21). The important point is

that there is a trivial spin structure and a non-trivial color structure.

15The definition is not unique because there is freedom to choose what to do away from the soft and

collinear limits
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We take the operator V(t) to operate only on the color space and define its action in

terms of its matrix elements, for which we use the notation
(
{ĉ′, ĉ}m

∣∣V(t; {p, f}m)
∣∣{c′, c}m

)
.

The definition of V(t) in terms of these matrix elements is

V(t)
∣∣{p, f, s′, c′, s, c}m

)
=

∑

{ĉ′,ĉ}m

∣∣{p, f, s′, ĉ′, s, ĉ}m

)(
{ĉ′, ĉ}m

∣∣V(t; {p, f}m)
∣∣{c′, c}m

)
.

(3.50)

Thus, using eq. (3.44),

(
1
∣∣V(t)

∣∣{p, f, s′, c′, s, c}m

)
=

∑

{ĉ′,ĉ}m

〈
{s′}m

∣∣{s}m

〉〈
{ĉ′}m

∣∣{ĉ}m

〉

×
(
{ĉ′, ĉ}m

∣∣V(t; {p, f}m)
∣∣{c′, c}m

)
.

(3.51)

If we insert eq. (3.49) and eq. (3.51) into eq. (3.48) and cancel the spin factors, we get

∑

{ĉ′,ĉ}m

〈
{ĉ′}m

∣∣{ĉ}m

〉(
{ĉ′, ĉ}m

∣∣V(t; {p, f}m)
∣∣{c′, c}m

)

= 2
〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
.

(3.52)

There is a simple way to satisfy this equation. We define

(
{ĉ′, ĉ}m

∣∣V(t, {p, f}m)
∣∣{c′, c}m

)
=

D

〈
{ĉ}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
δ
{ĉ′}m

{c′}m

+ δ
{ĉ}m

{c}m

〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{ĉ′}m

〉
D

.
(3.53)

What we have done here is to decompose
(
{ĉ′, ĉ}m

∣∣V(t, {p, f}m)
∣∣{c′, c}m

)
into two terms.

In the first term, nothing happens on the bra side of the density matrix but there is a

virtual correction on the ket side, while in the second term nothing happens on the ket

side of the density matrix but there is a virtual correction on the bra side.16 With this

definition, when we perform the sums over {ĉ}m and {ĉ′}m in eq. (3.52) using eq. (3.23)

we see that eq. (3.52) is satisfied.

We note that one could imagine solving eq. (3.41) numerically in the form

U(t + ∆t, 0)
∣∣ρ(0)

)
= [1 − V(t)∆t]U(t, 0)

∣∣ρ(0)
)

+ HI(t)∆tU(t, 0)
∣∣ρ(0)

)
. (3.54)

That is, one could use small time steps in which either one of the partons splits or else no

parton splits and the weights for different color states are readjusted. However, this is not

the way that shower evolution is typically constructed.

To proceed down a more traditional path, we define two other operators, VE(t) and

VS(t) with sum

VE(t) + VS(t) = V(t) . (3.55)

16What V contains is the singular parts of the virtual corrections, which are related to the collinear and

soft singularities of the real emission diagrams, plus an “unresolved” contribution from the real emission

diagrams. Thus we obtain V from H.
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The distinction between VE(t) and VS(t) lies in how we treat them within shower generation:

VE(t) is exponentiated and VS(t) is subtracted. We express the solution of eq. (3.41) in the

form

U(t, t′) = N (t, t′) +

∫ t

t′
dτ U(t, τ) [HI(τ) − VS(τ)]N (τ, t′) , (3.56)

where the operator N (t, t′) is the time ordered exponential of the operator VE(t),

N (t, t′) = T exp

{
−

∫ t

t′
dτ VE(τ)

}
. (3.57)

Here T represents the ordering in evolution time t. The operator N (t, t′) is a generalization

of the standard Sudakov exponential in parton shower Monte Carlo programs. It has the

group multiplication property

N (t3, t2)N (t2, t1) = N (t3, t1) (3.58)

and satisfies the differential equation

d

dt
N (t, t′) = −VE(t)N (t, t′) . (3.59)

Eq. (3.56) is interpreted as saying that either the system evolves without splitting from t′

to t, or else it evolves without splitting until an intermediate time τ , splits or undergoes a

color change at τ , and then evolves (possibly with further splittings or color changes) from

τ to t. The first term contains a summation of effects from virtual splittings. In the second

term we have a parton splitting contribution along with a subtraction that arises from the

part of the virtual splitting contribution that was not summed to form part of N (t, t′).

Now the operator V(t) is completely defined but we still need to define VE(t) and VS(t).

Here we have some freedom. There are at least three obvious choices:

1. We could define VE(t) = 0. Then VS(t) = V(t). This choice leads to a trivial Sudakov

exponential, N (t, t′) = 1. This is similar to what one does in fixed order calculations

when the singularities of the real emission graphs with m + 1 final state partons are

removed by the subtraction terms with m partons. This is not useful in the context

of a parton shower.

2. We could define VS(t) = 0. Then VE(t) = V(t). This means we exponentiate the

whole virtual splitting operator. It is the most “shower way” to organize the parton

evolution. The integral of V(t) over a range of t produces large logarithms and all

of these logarithms appear in the Sudakov exponent. Since V(t) is a non-diagonal

matrix in color space, the implementation of this choice may present difficulties.

3. Alternatively we can define VE(t) to be the diagonal in color as follows:

(
{ĉ′, ĉ}m

∣∣VE(t, {p, f}m)
∣∣{c′, c}m

)
= δ

{ĉ}m

{c}m
δ
{ĉ′}m

{c′}m
×

[〈
{c}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉

+
〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c′}m

〉]
.

(3.60)
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Then VS(t) is

VS(t, {p, f}m) = V(t, {p, f}m) − VE(t, {p, f}m) . (3.61)

With this choice, the computation of the operator N (t, t′) is simple because the basis

vectors in the statistical space are eigenvectors of the operator VE(t).

With this alternative, we do not exponentiate everything. However, when we study

color in the following sections, we will see with this choice that (with the color basis

that we will choose) VS(t) is small compared to VE(t). First, we have

〈
{c}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
=

∑

{c̃}m

〈
{c}m

∣∣{c̃}m

〉
D

〈
{c̃}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
,

〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c′}m

〉
=

∑

{c̃}m

〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c̃}m

〉
D

〈
{c̃}m

∣∣{c′}m

〉
.

(3.62)

We will see in eq. (7.14) that the matrix
〈
{c}m

∣∣{c̃}m

〉
is the unit matrix except for

1/N2
c corrections. Thus the difference between using dual basis vectors

∣∣{c̃}m

〉
D

in

eq. (3.53) and ordinary basis vectors
∣∣{c′}m

〉
is not important in the large Nc limit.

Second, we will see in section 12 that the matrix
〈
{ĉ}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
is almost

diagonal in the sense that its off-diagonal matrix elements are suppressed compared

to its diagonal matrix elements by factors of 1/N2
c . Thus the part of the virtual

contribution that is not exponentiated is small. This small part is not neglected, but

we can leave it out of the Sudakov exponent and treat it as a subtraction instead.

Effectively, this means that we treat 1/N2
c as a small parameter in addition to αs.

4. Momentum and flavor mapping

In this and the following sections, we explore how to define the splitting operator HI .

The first issue to examine is the momentum mapping. We begin with an m parton state

with momenta {p}m. One of the partons, with label l ∈ {a,b, 1, . . . ,m}, splits. After the

splitting, we have an m + 1 parton state with momenta {p̂}m+1. Our notation is that

parton l splits into partons with labels l and m + 1, while the other partons keep their

labels. The momenta {p̂}m+1 after splitting are determined by the momenta {p}m and a

momentum splitting variable that we call ζp, which defines the momenta of the daughter

partons. There is also a flavor splitting variable, ζf , which tells the daughter flavors.

In this section, we first describe the splitting of a final state parton, then move on

to the somewhat more complicated splitting of an initial state parton. For the final state

splitting we first describe how {p̂, f̂}m+1 is determined from {p, f}m and {ζp, ζf}. Then

we state the inverse transformation, from {p̂, f̂}m+1 to {p, f}m and {ζp, ζf}. Finally, we

deduce the jacobian for this change of variables. We will then be ready to do the same

thing for the splitting of an initial state parton.

There are many ways to define the momentum mapping {p}m ↔ {p̂}m+1. One of the

most successful is that of Catani and Seymour [14]. This may be called a local mapping:
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the momenta of most of the partons are left unchanged, while the momenta of two partons

are mapped into the momenta of three partons, (pl, pk) ↔ (p̂l, p̂m+1, p̂k). Here parton k is

a spectator parton, chosen as one of the partons that is color connected to parton l. (There

is an exception to this rule in the case of initial state splittings.) The antenna factorization

of ref. [21] also uses a local mapping. We use a global mapping, in which all of the partons

participate, as in ref. [22]. This way, each parton has to contribute only a little momentum.

We also include quark masses in the kinematics.

4.1 Splitting a final state parton

We begin by defining what happens to the parton flavors when a final state parton l splits.

The partons with indices other than l and m + 1 keep their flavors,

f̂j = fj , j /∈ {l,m + 1} . (4.1)

What happens to partons l and m + 1 is given by the value of the variable ζf = (f̂l, f̂m+1).

The flavor splitting variable takes values in a set Φl(fl) that depends on the flavor of the

mother parton. If parton l is a quark or antiquark, then the set Φl(fl) has only one element,

Φl(fl) = {(fl, g)} , fl 6= g . (4.2)

Here, we have used the freedom to assign labels in order to assign the label l to the daughter

quark or antiquark and the label m + 1 to the gluon. If parton l is a gluon, then ζf can be

a pair of gluons or any choice of (q, q̄) flavors,

Φl(g) = {(g, g), (u, ū), (d, d̄), . . . } . (4.3)

In the case of a g → q + q̄ splitting, we again use the freedom to assign labels in order to

assign the label l to the daughter quark the label m + 1 to the daughter antiquark.

We now turn to the momenta. Parton l has momentum pl with p2
l = m2(fl) and splits

into two partons l and m+1 with momenta p̂l and p̂m+1 respectively. The daughter partons

are on-shell: p̂2
l = m2(f̂l) and p̂2

m+1 = m2(f̂m+1). We always have (p̂l + p̂m+1)
2 ≥ m2(fl).

We need a bit of notation. Let Q be the total momentum of the final state partons,

Q ≡
m∑

j=1

pj = pa + pb . (4.4)

Define

al =
Q2

2pl ·Q
,

bl =
m2(fl)

2pl ·Q
.

(4.5)

Note that al + bl ≥ 1. To see this, let K = Q− pl be the total momentum of the final state

spectator partons, with K2 ≥ 0. Then

0 ≤ K2

2pl ·Q

=
Q2 − 2pl ·Q + m2(fl)

2pl ·Q
= al + bl − 1 .

(4.6)
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In order to define the momentum mapping, we first determine the total momentum

Pl = p̂l + p̂m+1 (4.7)

of the daughters of parton l. We take Pl to be a linear combination of pl and Q,

Pl = λpl +
1 − λ + y

2al
Q . (4.8)

There are two parameters in this definition. The first, y, is a measure of the virtuality,

P 2
l − m2(fl), of the splitting. The second, λ, is a function of y that we will determine

presently.

For an exactly collinear splitting or the emission of gluon with momentum p̂m+1 = 0,

we have Pl = pl. Away from these limits, the spectator partons will have to donate

some momentum in order to allow Pl 6= pl. We elect to leave the momenta of the initial

state partons unchanged, p̂a = pa and p̂b = pb. Instead, we choose to obtain the needed

momentum from the final state spectator partons by letting the momenta after the splitting

be related to the momenta before the splitting by a Lorentz transformation,

p̂µ
j = Λµ

ν pν
j , j /∈ {l,m + 1} . (4.9)

With this method of transferring momentum, each parton donates a share of the needed

momentum, with low momentum partons donating only a little momentum.

The total momentum of the final state spectator partons before the splitting is

K = Q − pl . (4.10)

Since the momenta of the initial state partons remains the same, Q̂ = p̂a + p̂b is the same

as Q. The total momentum of the final state spectator partons after the splitting is then

K̂ = Q − Pl . (4.11)

Since each final state spectator is changed by a Lorentz transformation, we have

K̂µ = Λµ
ν Kν . (4.12)

In fact, there is a Lorentz transformation that does this, namely

Λ(K̂,K)µν = gµ
ν − 2(K̂ + K)µ(K̂ + K)ν

(K̂ + K)2
+

2K̂µKν

K2
, (4.13)

provided that K̂2 = K2. Thus Pl must lie on the hyperbola (Q − Pl)
2 = (Q − pl)

2 in the

Q-pl plane, as illustrated in figure 3.

In the case in which the momenta K and K̂ are carried by a single massless spectator,

K̂ is parallel to K. In this case, one can use an alternative representation of the boost in

eq. (4.13) that remains well defined when K2 = (K̂ + K)2 = 0,

Λ(K̂,K)µν = gµ
ν +

(
K ·n
K̂ ·n

− 1

)
nµn̄ν +

(
K̂ ·n
K ·n − 1

)
n̄µnν , (4.14)
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Figure 3: Momentum space mapping for a final state splitting. Coordinate axes in the two lightlike

directions in the plane of pl and Q are shown. Points pl and Q are shown in the case that pl is

nearly lightlike. Then Pl lies on the hyperbola (Q − Pl)
2 = const. that passes through pl.

where n and n̄ are lightlike vectors in the Q-pl plane with n · n̄ = 1 and (pl · n/pl · n̄) <

(Q · n/Q · n̄). That is, these are the vectors along the two coordinate axes in figure 3, with

n directed toward the upper right and n̄ directed toward the upper left in the diagram.

We can arrange that K̂2 = K2 by making a proper choice of λ in eq. (4.8). We have

K2 = (al + bl − 1) 2Q·pl , (4.15)

and

K̂2 =
1

4al

[
(2al − 1 − y)2 − (1 − 4albl)λ

2
]
2Q·pl . (4.16)

We obtain K̂2 = K2 if

λ =

√
(1 + y)2 − 4al(y + bl)

1 − 4albl
. (4.17)

We note that λ → 1 when y → 0. As y increases, λ decreases. There is a maximum

possible value of y, namely the value that makes λ = 0,

ymax =
(√

al −
√

al + bl − 1
)2

− bl . (4.18)

The splitting parameter y has a simple meaning. From eq. (4.8), we find, using

eq. (4.17),

y =
P 2

l − m2(fl)

2pl ·Q
. (4.19)

That is, y is a dimensionless measure of the virtuality of the splitting. An alternative

relation is

y =
P 2

l − m2(fl)

2Pl ·Q − (P 2
l − m2(fl))

. (4.20)

There are also alternative relations for al and bl,

al =
Q2

2Pl ·Q + m2(fl) − P 2
l

,

bl =
m2(fl)

2Pl ·Q + m2(fl) − P 2
l

.

(4.21)
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These relations can be derived with the use of the relation

2Pl ·Q = (1 + y) 2pl ·Q . (4.22)

There is also a minimum value of y. Since P 2
l > [m(f̂l)+m(f̂m+1)]

2, we have y > ymin

where

ymin =
[m(f̂l) + m(f̂m+1)]

2 − m2(fl)

2pl ·Q
. (4.23)

Note that if all of the partons are massless, then ymin = 0. In addition, if fl = f̂l is a

massive quark flavor and f̂m+1 = g, then also ymin = 0.

We have seen how, given the virtuality variable y, we can define Pl = p̂l + p̂m+1 in the

plane of pl and Q such that P 2
l − m2(fl) = y 2pl · Q and so that the needed momentum

donation from the spectator partons can be obtained by a Lorentz transformation. It

remains to define p̂l and p̂m+1 individually. This is simple. We let p̂l and p̂m+1 be any

momenta on the appropriate mass shells that sum to Pl.

It will prove convenient to formulate this rather abstractly. We denote the daughter

parton momenta by

ζp ≡ (p̂l, p̂m+1) . (4.24)

We must have

ζp ∈ Γl({p}m, ζf) , (4.25)

where the set Γl({p}m, ζf) is described as follows,

Γl({p}m, ζf) =
{

(p̂l, p̂m+1)
∣∣∣ p̂2

l = m2(f̂l), p̂l ·Q > 0,

p̂2
m+1 = m2(f̂m+1), p̂m+1 ·Q > 0,

εµναβ(p̂ν
l + p̂ν

m+1) pα
l Qβ = 0, (4.26)

(Q − p̂l − p̂m+1)
2 = (Q − pl)

2
}

.

That is, each of p̂l and p̂m+1 lies on the appropriate forward mass shell, their sum lies in

the plane of pl and Q, and K̂2 = K2. These conditions entail that

[m(f̂l) + m(f̂m+1)]
2 ≤ (p̂l + p̂m+1)

2 ≤
(√

Q2 −
√

Q2 + m2(fl) − 2pl ·Q
)2

, (4.27)

which corresponds to ymin ≤ y ≤ ymax.

We note that the set Γl is a three dimensional surface in the space of momenta

(p̂l, p̂m+1). One can choose three coordinates to describe this surface, for instance a virtu-

ality variable, a momentum fraction variable, and an azimuthal angle. Different choices of

coordinates may be best for different purposes, so we leave this choice open.

We give a name to this transformation of momenta and flavors:

{p̂, f̂}m+1 = Rl({p, f}m, {ζp, ζf}) . (4.28)

In parton splittings close to the collinear or soft limits, partons lose energy when they

split. It is of interest to see how this property carries over to splittings that are not close
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to the limit. Here, the choice of the mapping Rl may be considered to be part of a model

for shower evolution that could be sensible or perhaps not so sensible. An investigation of

properties of the model is thus of some significance.

Using K2 = K̂2, we derive

Q·pl − Q·p̂l = p̂m+1 ·K̂ +
1

2

[
m2(fl) − m2(f̂l) + m2(f̂m+1)

]
. (4.29)

This is especially interesting in the case that parton l is a quark and parton m + 1 is a

gluon. Then the term involving masses vanishes. We note that p̂m+1 · K̂ ≥ 0 because

both p̂m+1 and K̂ lie inside or on the forward light cone. Thus the energy of the quark,

as measured in the frame in which Q is at rest, is bigger before the splitting than after

the splitting. By emitting bremsstrahlung, the quark slows down. If evolution of the final

state were to continue long enough, the quark would slow to a stop in the ~Q = 0 frame.

Then radiation from that quark would cease. At any point in the shower evolution, there

can be an initial state splitting, discussed below in section 4.4. This changes pa or pb and

thus pa +pb = Q. Now final state quarks tend to come to rest in the new ~Q = 0 frame. We

judge that a tendency for quarks to slow down (and, similarly, for gluons to lose energy)

is reasonably sensible. Of course, the partons should not be allowed to shower indefinitely.

At some resolution scale, a perturbative model for showering is simply wrong and a process

by which partons combine to form hadrons is needed.

4.2 Combining two final state partons

It is significant (and useful) that this transformation has an inverse. Let start with {p̂}m+1

and determine {p}m and {ζp, ζf}.
The splitting variable for the momenta is given by the momenta of the daughter par-

tons, ζp = (p̂l, p̂m+1). From {p̂}m+1 we determine

Q =
m+1∑

j=1

p̂j = p̂a + p̂b . (4.30)

Then eq. (4.20) gives y, eq. (4.21) gives al and bl, and eq. (4.17) gives λ. Since the

calculation of λ involves taking the square root of λ2, we should check that λ2 > 0. For

this purpose, we can express λ2 in terms of dot products of vectors as

λ2 =
4[(Q·Pl)

2 − Q2P 2
l ] + m2(fl) [4Pl ·K̂ + m2]

4Q·K̂ [Pl ·K̂ + P 2
l − m2(fl)] + (P 2

l − m2(fl))2
. (4.31)

Since Q, Pl, and K̂ = Q − Pl lie inside or on the positive lightcone and P 2
l − m2(fl) > 0,

both the numerator and the denominator are non-negative. With y, λ, al and bl at hand,

one can calculate the lightlike momentum pl by rearranging eq. (4.8),

pl =
1

λ
(p̂l + p̂m+1) −

1 − λ + y

2λal
Q . (4.32)

We now have pl. We define pa = p̂a and pb = p̂b. This leaves the pj for j /∈ {l, a,b}.
For this, we need the inverse Lorentz transformation to eq. (4.9). From K = Q − pl and
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K̂ = Q− p̂l − p̂m+1, we construct Λ(K, K̂)µν using eq. (4.13) or eq. (4.14) with the roles of

K̂ and K interchanged. Then

pµ
j = Λ(K, K̂)µν p̂ν

j , j /∈ {l, a,b} . (4.33)

The transformation of the flavors is simple. The splitting variable ζf is given by the

flavors of the daughter particles, (f̂l, f̂m+1). The flavor of the mother parton is

fl = f̂l + f̂m+1 , (4.34)

with the obvious definition of adding flavors, as in d + g = d and u + ū = g. The flavors of

the other partons are unchanged

fj = f̂j , j /∈ {l,m + 1} . (4.35)

We give a name to this transformation of momenta and flavors,

{{p, f}m, {ζp, ζf}} = Ql({p̂, f̂}m+1) . (4.36)

This is the inverse transformation to Rl, eq. (4.28).

4.3 The integration measure for final state splitting

With a suitable choice of the integration measure dζp for integrating over the splitting

variables ζp, we can arrange that

∫
[d{p̂, f̂}m+1]g({p̂, f̂}m+1) =

∫
[d{p, f}m]

∑

ζf∈Φl(fl)

∫
dζpθ(ζp ∈ Γl({p}m, ζf))g({p̂, f̂}m+1)

(4.37)

for an arbitrary function g({p̂, f̂}m+1). The definition that we need is

dζp ≡ dy θ(ymin < y < ymax) λ
pl ·Q

π

× d4p̂l

(2π)4
2πδ+(p̂2

l − m2(f̂l))
d4p̂m+1

(2π)4
2πδ+(p̂2

m+1 − m2(f̂m+1))

× (2π)4 δ

(
p̂l + p̂m+1 − λpl −

1 − λ + y

2al
Q

)
.

(4.38)

Here the limits on y are given in eqs. (4.18) and (4.23).

4.4 Splitting an initial state parton

Consider the splitting of an initial state parton, say parton “a.” The initial state parton

with momentum pa ≈ ηapA splits to produce a new initial state parton with momentum

p̂a ≈ η̂apA and a new final state parton with label m + 1 and momentum p̂m+1. We are

using the usual backwards evolution here, so that the evolution going forward in time is

p̂a → pa + p̂m+1. In this subsection, we describe how {p̂, f̂}m+1 is determined from {p, f}m

and splitting variables {ζp, ζf}. The splitting of the other initial state parton is described

by the same formulas with a ↔ b.
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We begin by defining what happens to the parton flavors, recalling our notation that

for the initial state partons “a” and “b”, fa, f̂a, fb and f̂b denote the opposite of the flavor

of the physical incoming parton. The partons with indices other than “a” and m + 1 keep

their flavors,

f̂j = fj , j /∈ {a,m + 1} . (4.39)

What happens to partons “a” and m+1 is given by the value of the variable ζf = (f̂a, f̂m+1).

The flavor splitting variable takes values in a set Φa(fa) that depends on the flavor of the

mother parton. This set is determined by the requirement that fa = f̂a + f̂m+1. If parton

“a” is a quark or antiquark, then the set Φa(fa) has only two elements,

Φa(fa) = {(fa, g), (g, fa)} , fa 6= g . (4.40)

If parton “a” is a gluon, then ζf can be a pair of gluons or any choice of (q, q̄) or (q, q̄)

flavors,

Φa(g) = {(g, g), (u, ū), (ū,u), (d, d̄), (d̄,d), . . . } . (4.41)

We now turn to the momenta. Let parton “a” with momentum fraction ηa radiate a

parton m + 1 with momentum p̂m+1. We then need to define how to determine {p̂}m+1

from {p}m and p̂m+1.

As discussed in section 3.1, we can include masses for the initial state partons.17 We

take the partons to be on-shell with zero transverse momenta,

pa = ηapA +
m2(fa)

ηas
pB ,

pb = ηbpB +
m2(fb)

ηbs
pA ,

p̂a = η̂apA +
m2(f̂a)

η̂as
pB .

(4.42)

Recall that we define pA and pB to be lightlike approximations to the incoming hadron

momenta, with 2pA · pB = s. The radiated parton can have a mass,

p̂2
m+1 = m2(f̂m+1) . (4.43)

We take the momentum fraction of parton “b” to remain the same,

η̂b = ηb . (4.44)

The momentum fraction η̂a after the splitting will be determined by p̂m+1. As in the case

of a final state splitting, it is not generally possible to have p̂a = pa + p̂m+1 given the

mass shell conditions and the possibility that the radiated parton has non-zero transverse

momentum. In order to allow the approximation that both pa and p̂a are on-shell with

zero transverse momenta, we therefore take some momenta from the final state spectator

17Recall that this is optional. One could just replace the masses for the initial state partons by zero,

m2(fa) = m2(f̂a) = m2(fb) = 0. One could also set all quark masses to zero.
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partons by letting the momenta after the splitting be related to the momenta before the

splitting by a Lorentz transformation,

p̂µ
j = Λµ

ν pν
j , j ∈ {1, . . . ,m} . (4.45)

Since each final state spectator is changed by a Lorentz transformation, we have

K̂µ = Λµ
ν Kν , (4.46)

where K is the momentum of the final state partons before the splitting,

K = pa + pb , (4.47)

and K̂ is the momentum of the final state spectators after the splitting,

K̂ = p̂a + pb − p̂m+1 . (4.48)

In order for K and K̂ to be related by a Lorentz transformation, we need K̂2 = K2.

To see what this means, define

Q̂(η̂a) = p̂a + pb =

(
η̂a +

m2(f̂b)

ηbs

)
pA +

(
ηb +

m2(f̂a)

η̂as

)
pB . (4.49)

Then we demand that

(Q̂(η̂a) − p̂m+1)
2 = K2 . (4.50)

The vector p̂m+1 determines η̂a. In the space of p̂m+1, a surface of constant η̂a is the

intersection of the hyperbola p̂2
m+1 = m2(f̂m+1) with the hyperbola given by eq. (4.50), as

illustrated in figure 4. Using p̂2
m+1 = m2(f̂m+1) in eq. (4.50), we can write

2 Q̂(η̂a)·p̂m+1 = Q̂(η̂a)
2 + m2(f̂m+1) − K2 . (4.51)

Looked at this way, a surface of constant η̂a is the intersection of the hyperbola p̂2
m+1 =

m2(f̂m+1) with the plane defined by eq. (4.51). We will require η̂a < 1. Thus the allowed

region in p̂2
m+1 is the part of the forward mass shell with

2 Q̂(1)·p̂m+1 < Q̂(1)2 + m2(f̂m+1) − K2 . (4.52)

In order to solve for η̂a given p̂m+1, we write K2 and K̂2 in the form

K2 = αηa −
β

ηa
− γ ,

K̂2 = α̂η̂a −
β̂

η̂a
− γ̂ .

(4.53)

Here

α = ηbs ,

β = − m2(fa)m2(fb)

ηbs
,

γ = − m2(fa) − m2(fb) ,

(4.54)
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Figure 4: Momentum space for p̂m+1 in an initial state splitting. Coordinate axes along pA and

pB are shown, along with the point Q̂(η̂a). We show the mass shell for p̂m+1 and the hyperbola

(Q̂(η̂a) − p̂m+1)
2 = K2. Points p̂m+1 for a given value of η̂a are on the intersection of these two

hyperbolas. We illustrate a point p̂m+1 with zero momentum transverse to pA and pB, but in

general p̂m+1 can have transverse components. The plane specified in eq. (4.51) is also depicted.

while

α̂ = ηbs − 2pA ·p̂m+1 ,

β̂ =
m2(f̂a)

s

{
2pB ·p̂m+1 −

m2(fb)

ηb

}
,

γ̂ = 2pb ·p̂m+1 − m2(f̂a) − m2(fb) − m2(f̂m+1) .

(4.55)

The condition K̂2 = K2 now determines η̂a,

η̂a =
1

2α̂

{
K2 + γ̂ +

√
(K2 + γ̂)2 + 4α̂β̂

}
. (4.56)

It is a consequence of eq. (4.56) and the kinematic conditions (3.6) and (3.9) that

η̂a > ηa . (4.57)

We prove this in appendix A.

Having fixed η̂a so that K̂2 = K2, these two momenta will be related by eq. (4.46),

K̂µ = Λ(K̂,K)µν Kν , (4.58)

where Λµ
ν the Lorentz transformation (4.13). This allows us to define the spectator mo-

menta after the splitting to be related to the spectator momenta before the splitting by

this same boost, as in eq. (4.45),

p̂µ
j = Λ(K̂,K)µν pν

j , j ∈ {1, . . . ,m} . (4.59)

For a final state splitting, we defined a splitting variable ζp in a three dimensional set

Γl so that {p}m together with ζp determines {p̂}m+1. Here we use an analogous notation,

with

ζp = (p̂a, p̂m+1) . (4.60)
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We choose

ζp ∈ Γa({p}m, ζf) , (4.61)

where

Γa({p}m, ζf) =
{

(p̂a, p̂m+1)
∣∣∣ p̂2

m+1 = m2(f̂m+1), p̂m+1 ·(pa + pb) > 0,

p̂a = η̂apA +
m2(f̂a)

η̂as
pB,

K̂2(η̂a) = K2(ηa), K̂ ·K > 0,

ηa < η̂a < 1
}

.

(4.62)

That is, the radiated parton lies on the forward mass-shell and the new initial state parton

is also on its mass shell with has zero transverse momentum. Its momentum fraction η̂a is

determined by K̂2 = K2, with K inside the forward lightcone. The solution of K̂2 = K2

is given by eq. (4.56). We also need η̂a to be big enough that that the kinematic bound

that was given in eq. (3.9) is obeyed. This follows from η̂a > ηa. Finally, η̂a must be less

than 1.

As for a final state splitting, the set Γa is a three dimensional surface in the space

of momenta (p̂a, p̂m+1). One can describe this surface using three coordinates such as a

virtuality variable, a momentum fraction variable, and an azimuthal angle. We leave the

choice of coordinates open.

We give a name to this transformation of momenta and flavors, Rl with l = a:

{p̂, f̂}m+1 = Ra({p, f}m, {ζp, ζf}) . (4.63)

4.5 Combining an initial state parton with a final state parton

The transformation for splitting an initial state parton has an inverse. Let us start with

{p̂, f̂}m+1 and determine {p, f}m and {ζp, ζf}.
The momentum splitting variable is simply ζp = (p̂a, p̂m+1). For the momentum frac-

tion of parton “b” before the splitting, we take

ηb = η̂b . (4.64)

To determine ηa, we simply use the representation (4.53) of K2 and K̂2 and solve K2 = K̂2

for ηa in terms of η̂a. This gives

ηa =
1

2α

{
K̂2 + γ +

√
(K̂2 + γ)2 + 4αβ

}
. (4.65)

Once we have ηa, we can construct K = pa+pb. Then from K and K̂ we can construct

Λ(K, K̂), the inverse Lorentz transformation matrix to Λ(K̂,K) defined in eq. (4.13) by

simply using the same equation with K ↔ K̂. Then we can construct the remaining

momenta using

pµ
j = Λ(K, K̂)µν p̂ν

j . (4.66)

– 34 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

The transformation of the flavors is simple. The splitting variable ζf is given by the

flavors of the (backwards evolution) daughter particles, (f̂a, f̂m+1). The flavor of the mother

parton is

fa = f̂a + f̂m+1 . (4.67)

The flavors of the other partons are unchanged

fj = f̂j , j /∈ {a,m + 1} . (4.68)

We give a name to this transformation of momenta and flavors,

{{p, f}m, {ζp, ζf}} = Qa({p̂, f̂}m+1) . (4.69)

This is the inverse transformation to Ra, eq. (4.63).

4.6 The integration measure for initial state splitting

With a suitable choice of the integration measure dζp for integrating over the splitting

variables ζp, we can arrange that

∫
[d{p̂, f̂}m+1] g({p̂, f̂}m+1)

=

∫
[d{p, f}m]

∑

ζf∈Φa(fa)

∫
dζp θ(ζp ∈ Γa({p}m, ζf)) g({p̂, f̂}m+1)

(4.70)

for an arbitrary function g({p̂, f̂}m+1) with support in K̂2 > 4m2
H. The definition that we

need is

dζp ≡ d4p̂m+1

(2π)4
2πδ+(p̂2

m+1 − m2(f̂m+1))
α + β/η2

a

α̂ + β̂/η̂2
a

. (4.71)

The factor (α+β/η2
a)/(α̂+β̂/η̂2

a) here is just dη̂a/dηa calculated from the relation K̂2 = K2.

5. Spin states

The quantum scattering amplitude
∣∣M({p, f}m)

〉
is a vector in spin⊗ color space. Thus

we can expand it in terms of spin and color basis vectors,

∣∣M({p, f}m)
〉

=
∑

{c}m

∣∣{c}m

〉 ∑

{s}m

∣∣{s}m

〉
M({p, f, s, c}m) . (5.1)

The treatment of color that appears to us to be most useful for parton showers is a bit subtle

and, in particular, involves basis vectors that are not exactly conventionally normalized and

are not exactly orthogonal to one another. The color basis is described in section 7. In

contrast, our spin basis vectors are quite standard, are orthogonal and normalized,

〈
{s′}′m

∣∣{s}m

〉
= δm′,m δ{s′}m,{s}m

. (5.2)
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The spin labels {sa, sb, s1, . . . , sm} represent the helicities of the corresponding particles.18

The basis states for parton l are represented for quarks or antiquarks by Dirac spinors

U(pl, sl) or V (pl, sl), where p2
l = m2(fl). For gluons, we need polarization vectors ε(pl, sl)

with p2
l = 0. Our definition makes use an auxiliary vector nl, chosen along the intersection

of the positive lightcone with the plane of pl and Q, where Q =
∑m

j=1 pj = pa + pb is the

total momentum of the final state particles. The normalization of nl is not important. We

take the solution that is not close to pl in the case that m2(fl) is small. A convenient set

of choices is

nl =





pB , l = a ,

pA , l = b ,

Q − Q2

Q·pl +
√

(Q·pl)2 − Q2 m2(fl)
pl , l ∈ {1, . . . ,m} .

(5.3)

For quarks and antiquarks, we use Dirac spinors U(p, s) or V (p, s) with p2 = m2 and

s = ±1/2. We can take V (p, s) = [U(p, s)C]T , where C is the charge conjugation matrix,

iγ2γ0 in the chiral representation of the gamma matrices, with C−1γµC = −(γµ)T and

C−1 = C† = CT = −C. The spinors obey (/p − m)U(p, s) = 0 and (/p + m)V (p, s) = 0.

They are normalized to

U(p, s)γµU(p, s) = 2pµ ,

V (p, s)γµV (p, s) = 2pµ .
(5.4)

We use helicity eigenstates, defined so that

γ5/sU(p,±1/2) = ±U(p,±1/2) ,

γ5/sV (p,±1/2) = ±V (p,±1/2) .
(5.5)

Here the spin vector s is

s =
1

m
p − m

p·n n , (5.6)

where n is the auxiliary lightlike vector from eq. (5.3). Thus s2 = −1 and s · p = 0.

A convenient definition that defines the phase of U(p,−s) in terms of the phase of

U(p, s) is

U(p,−s) =

(
1 +

m

p·n /n

)
V (p, s) . (5.7)

For gluons, we need polarization vectors εµ(p, s;Q), representing a given helicity s and

defined with the aid of an auxiliary vector Q. The polarization vectors obey p·ε(p, s;Q) = 0

and

Q·ε(p, s;Q) = 0 . (5.8)

We can also write

ε(p, s;Q) = ε(p, s;n) , (5.9)

18Many authors follow the convention that the helicity label for an incoming particle is the negative of

the particle’s helicity. In contrast, our convention is that sa and sb, as well as s1, . . . , sm, represent the

physical helicities of the particles.
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where n · ε(p, s;n) = 0 and n is a lightlike vector defined in eq. (5.3). We define the phase

by using the standard definition in terms of mass zero Dirac spinors [23],

εµ(p,±1;n) = ± U(n,±1/2)γµU(p,±1/2)√
2 U(p,∓1/2)U(n,±1/2)

. (5.10)

With this definition, there is a simple relation between polarization vectors defined

with different auxiliary vectors Q and thus different lightlike auxiliary vectors n [23],

εµ(p,±1;n) − εµ(p,±1;n′) = ∓
√

2 U(n,±1/2)U(n′,∓1/2)

U(n,±1/2)U(p,∓1/2) U(p,±1/2)U(n′,∓1/2)
pµ .

(5.11)

If we use these polarization vectors with the exact tree-level Feynman diagrams, gauge

invariance of the matrix elements, together with the fact that εµ(p, s;n) differs from

εµ(p, s;n′) by a vector proportional to pµ, shows that the amplitude is independent of

the choice of the auxiliary vector Q. Our matrix elements will be approximate and will be

gauge invariant only to the extent that the splittings are close to the soft or collinear limits.

Thus some dependence on the auxiliary vector used to define the polarization vectors will

result.

6. Splitting functions for the quantum states

Consider for a moment a theory without spin, color, or flavors, say φ3 theory in six di-

mensions as in section 2. An (m + 1)-parton scattering amplitude M({p̂}m+1) is simple in

the limit in which two of the partons are approximately collinear. Supposing that partons

m + 1 and l are almost collinear, we have

M({p̂}m+1) ≈ v({p̂}m+1)M({p}m) , (6.1)

where v({p̂}m+1) = g/(2p̂l · p̂m+1). Here {p}m is determined from {p̂}m+1 by the (six-

dimensional version of) the transformation described in section 4. This factorization for-

mula for the amplitude becomes exact in the limit that partons m+1 and l become collinear.

Away from the collinear limit, there is some freedom to choose the momentum mapping

and the splitting amplitude v({p̂}m+1). One has to make a definite choice based on ease of

computation or conceptual simplicity. In the case of QCD, we have soft as well as collinear

singularities, we have parton flavors (which are rather trivially treated) and we have color

and spin, which are not so trivial. Let us see how to describe splitting in QCD.

It has been known for a long time that QCD amplitudes factor in the soft and collinear

limits [24]. Indeed, there are beautiful modern formulas for the factors [23, 25, 21]. We

have adopted a more pedestrian approach that has at least the advantage of encompassing

the soft and collinear limits at the same time and of including masses. A treatment of the

squared amplitude that is rather similar to the approach of this paper, but at higher order,

may be found in ref. [26].
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6.1 Definition of the splitting functions vl

The QCD scattering amplitude for m+1 partons is a vector
∣∣M({p̂, f̂}m+1)

〉
in color⊗ spin

space. In the limit that two partons, l and m+1 are almost collinear, this amplitude takes

a certain limiting form,

∣∣M({p̂, f̂}m+1)
〉
∼

∣∣Ml({p̂, f̂}m+1)
〉

, (6.2)

where
∣∣Ml({p̂, f̂}m+1)

〉
is to be defined precisely below. When p̂m+1 becomes soft, then all

of the
∣∣Ml({p̂, f̂}m+1)

〉
amplitudes contribute to the limit,

∣∣M({p̂, f̂}m+1)
〉
∼

∑

l

∣∣Ml({p̂, f̂}m+1)
〉

. (6.3)

We arrange the definition so that eqs. (6.2) and (6.3) are exact in the collinear or soft limit

respectively. We also arrange that
∣∣Ml({p̂, f̂}m+1)

〉
is defined for any {p̂, f̂}m+1. Then

these equations are approximate away from the limit. The amplitude
∣∣Ml({p̂, f̂}m+1)

〉
is

then the contribution to the (m+1)-parton amplitude from the splitting of parton l in the

parton shower approximation.

We now need to define
∣∣Ml({p̂, f̂}m+1)

〉
. This amplitude factors into a splitting oper-

ator times the m-parton matrix element evaluated at momenta and flavors {p, f}m de-

termined from {p̂, f̂}m+1 according to the transformation Ql({p̂, f̂}m+1), eq. (4.36) or

eq. (4.69),

∣∣Ml({p̂, f̂}m+1)
〉

= t†l (fl → f̂l + f̂m+1)V †
l ({p̂, f̂}m+1)

∣∣M({p, f}m)
〉

. (6.4)

In eq. (6.4), V †({p̂, f̂}m+1) is the analogue of v({p̂}m+1) but is now an operator on the

spin part of the color⊗ spin space. There is also an operator t†l (fl → f̂l + f̂m+1) on the

color part of the color⊗ spin space. This operator multiplies by the right color matrix. We

will not comment further on it in this section, but will turn to the description of color in

section 7. The spin dependent splitting operator can be described in terms of its matrix

elements,
〈
{ŝ}m+1

∣∣V †
l ({p̂, f̂}m+1)

∣∣{s}m

〉
. (6.5)

This is a simple function of {p̂, f̂}m+1, {ŝ}m+1, and {s}m. Furthermore, we can take it to

be diagonal in the spectator spins,

〈
{ŝ}m+1

∣∣V †
l ({p̂, f̂}m+1)

∣∣{s}m

〉
=


 ∏

j /∈{l,m+1}

δŝj ,sj


 vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) . (6.6)

Our object in this section is to define the splitting functions v from the QCD vertices. In

writing formulas for vl({p̂, f̂}m+1, ŝm+1, ŝl, sl), we will use the momentum pl. We under-

stand that this is obtained from {p̂, f̂}m+1 according to the transformation Ql({p̂, f̂}m+1).
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Figure 5: Illustration of factorization at the amplitude level, leading to the definition of the

splitting function in eq. (6.19). When the final state gluon becomes collinear with the initial state

quark, the full amplitude is approximately the amplitude for one fewer parton, with the incoming

quark after the gluon radiation approximated as being on shell, times a splitting function simply

made from the QCD qqg vertex and the singular quark propagator. If the final state gluon is soft,

then this diagram is one of the possibilities. Then, the soft gluon could have been emitted from

any of the external legs of the diagram and we must sum over all of the possible emissions. In this

case, we can, however, use a simpler splitting function.

6.2 Initial state q → q + g splitting, quark scatters

Consider an initial state q → q + g splitting in which the gluon goes into the final state

and the quark enters the hard scattering, as illustrated in figure 5. We highlight this case

because it exhibits some complications compared to final state q → q + g splitting. The

parton that splits could be either of the initial state partons. We examine the case that it

is parton “a.” The kinematics were defined in sections 4.4 and 4.5. In order to keep our

notation for this subsection as simple as possible, we will write

p = pa , η = ηa ,

p̂ = p̂a , η̂ = η̂a ,

q = p̂m+1 , m = m(fa) = m(f̂a) ,

ŝ = ŝa , εµ = εµ(p̂m+1, ŝm+1; Q̂) .

(6.7)

Here ε is defined to be orthogonal to Q̂ = p̂a + p̂b = p̂a + pb.

The Feynman rules for
∣∣M({p̂, f̂}m+1)

〉
give the following structure

M = H
/P + m

P 2 − m2
gtc/ε∗U(p̂, ŝ) . (6.8)

Here there are factors U(p̂, ŝ) for the initial state quark and ε∗µ for the final state gluon.

There is a vertex gγµ with a color matrix tc. There is a propagator for the off-shell quark

that carries momentum

P = p̂ − q . (6.9)

The quark propagator has a denominator P 2 −m2 and a numerator /P + m. Finally, there

is the rest of the diagram, H, which contains hard interactions. Thus H carries a Dirac

spinor index. We need to relate this to
∣∣M({p, f}m)

〉
, where the momenta and flavors
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{p, f}m as well as the splitting variables {ζp, ζf} are given by the momentum and flavor

mapping Ql({p̂, f̂}m+1), eq. (4.36).

We will be concerned with the behavior of M in the soft and collinear limits. The soft

limit is q → 0 (for all four components of q). Since P 2 −m2 = −2p̂ · q, the denominator is

proportional to a single power of q, while the numerator stays finite in the q → 0 limit. To

describe the collinear limit, let q⊥ be the part of q orthogonal to pA and pB. The collinear

limit is q⊥ → 0 while q · pB stays finite. Also, m → 0 with m2 . |q2
⊥|. Then near the

collinear limit, the denominator is

P 2 − m2 =

(
η̂

η̂ − η
q2
⊥ − η̂ − η

η̂
m2

)
(1 + O(q2

⊥,m2)) . (6.10)

That is, the denominator has two powers of q⊥. To analyze the numerator, we note that

p = ηpA + O(q2
⊥,m2) ,

p̂ = η̂pA + O(q2
⊥,m2) ,

q̂ = (η̂ − η)pA + q⊥ + O(q2
⊥,m2) .

(6.11)

The numerator has a factor ( /P +m)/ε∗U(p̂, ŝ). Using q · ε = 0 and (/̂p−m))U(p̂, ŝ) = 0, one

can rewrite this factor in the form

(/P + m)/ε∗U(p̂, ŝ) = 2
(
p̂ − η̂

η̂ − η
q
)
· ε∗ U(p̂, ŝ) + /ε∗

[
/q −

η̂ − η

η̂
(/̂p − m)

]
U(p̂, ŝ) . (6.12)

Looking at the numerator in this form, we see that it vanishes in the collinear limit pro-

portionally to one power of q⊥ or m. Thus M is only half as singular in the collinear limit

as it first appears.

We now develop an approximation for M . We can insert a factor 1 next to H in

eq. (6.8) so that it reads

M = H
/n(/p − m) + (/p + m)/n

2p·n
/P + m

P 2 − m2
(gtc/ε∗)U(p̂, ŝ) . (6.13)

Here n is the lightlike vector n = pB.

We now notice that the contribution from the first term, namely

Mns = H
/n(/p − m)

2p·n
/P + m

P 2 − m2
(gtc/ε∗)U(p̂, ŝ) , (6.14)

can be neglected because it does not have a collinear or soft singularity. To see this takes

a little analysis. First, we write

p = P + (p + q − p̂) . (6.15)

Since ( /P − m)( /P + m) = P 2 − m2, we have

Mns = H
/n

2n·p (gta/ε∗)U(p̂, ŝ) + H
/n(/p + /q − /̂p)

2p·n
/P + m

P 2 − m2
(gtc/ε∗)U(p̂, ŝ) . (6.16)
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The first term is non-singular because the denominator is cancelled. In the second term, the

vector (p + q − p̂) vanishes in the collinear or soft limit. In the soft limit, it is proportional

to one power of q, which cancels the single power of q in the denominator. In the collinear

limit, it is proportional to one power of q⊥. As we have just seen, the rest of the numerator

contains an additional factor of q⊥. Together, these cancel the two powers of q⊥ from the

denominator. Thus no singularity remains.

We are left with

Msing = H
(/p + m)/n

2p·n
/P + m

P 2 − m2
(gtc/ε∗)U(p̂, ŝ) . (6.17)

In eq. (6.17), the factor /p + m is

/p + m =
∑

s

U(p, s)U (p, s) . (6.18)

The factor U(p, s) is to be associated with H, giving the hard scattering amplitude for

an incoming quark with spin s. The remaining factor, U(p, s), then becomes part of the

splitting function. This calculation leads us to define the splitting function as

va = −
√

4παs

(p̂ − q)2 − m2
ε∗µ

U(p, s)/n(/̂p − /q + m)γµU(p̂, ŝ)

2p·n . (6.19)

This does not include the color matrix and a factor −1, which will be included in the color

operator t†l (fl → f̂l + f̂m+1). As indicated by the derivation, eq. (6.19) is directly given by

the factorized structure of QCD Feynman graphs in the soft and collinear limits. There is

freedom to choose the form of the splitting function as one moves away from these limits.

We have made a simple choice.

In the hard part of the diagram, we can make approximations that are valid for q2
⊥ → 0.

In particular, we can adjust the momenta of the partons with indices other than “a,”

replacing p̂j by pj as defined by the momentum mapping Ra({p, f}m, {ζp, ζf}), eq. (4.63).

6.3 Initial state q → q + g splitting, gluon scatters

We consider next the process in which an initial state quark with label “a” splits to make

a quark that goes into the final state (with label m + 1) and a gluon that enters the hard

scattering (with label “a”). We simplify the notation as in the previous subsection by using

p = pa , η = ηa ,

p̂ = p̂a , η̂ = η̂a ,

q = p̂m+1 , m = m(f̂a) = m(f̂m+1) ,

ŝ = ŝa , s′ = ŝm+1 .

(6.20)

The Feynman rules for
∣∣M({p̂, f̂}m+1)

〉
give the following structure

M = Hµ Dµν(P ;n)

P 2
U(q, s′)(gtcγν)U(p̂, ŝ) . (6.21)
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Here H is the hard part of the graph, now with a vector index, and there is a propagator

for the off-shell gluon that carries momentum

P = p̂ − q . (6.22)

We have chosen the axial gauge n · A = 0, where n is the lightlike vector n = PB. The

numerator of the gluon propagator is

Dµν(P ;n) = −gµν +
Pµnν + nµP ν

P ·n . (6.23)

As in the previous subsection, M is singular in the collinear limit, in which q⊥ → 0

and m → 0.19 As in the previous section, the numerator is proportional to q⊥ and the

denominator is proportional to q2
⊥ in the collinear limit.

In order to find a suitable approximation for M , we insert 1 next to H, so that it reads

M = Hα

[
−Dαµ(p;n) +

pαnµ + nαpµ

p·n

]
Dµν(P ;n)

P 2
U(q, s′)(gtcγν)U(p̂, ŝ) . (6.24)

We can drop the term (pαnµ + nαpµ)/(n·p). To see this, we write

pαnµ + nαpµ

p·n =
Pαnµ + nαPµ

P ·n + Dαµ(p;n) − Dαµ(P ;n) . (6.25)

The term Pαnµ gives zero when contracted with Dµν . When we contract nαPµ with Dµν ,

we get
nαPµ

P ·n
Dµν(P ;n)

P 2
=

nαnν

(P ·n)2
, (6.26)

which does not have a collinear singularity. Finally, the difference Dαµ(p;n) − Dαµ(P ;n)

is proportional to q⊥ in the collinear limit because P −p ∝ q⊥ in this limit. The remaining

numerator factor gives another factor q⊥ in the collinear limit, so that the factor q2
⊥ from

the denominator is cancelled.

Thus we are left with M ∼ Msing, where

Msing = −Hα Dαµ(p;n)
Dµν(P ;n)

P 2
U(q, s′)(gtcγν)U(p̂, ŝ) . (6.27)

The factor Dαµ(p;n) is

Dαµ(p;n) =
∑

s

εα(p, s;n)εµ(p, s;n)∗ =
∑

s

εα(p, s; Q̂)εµ(p, s; Q̂)∗ . (6.28)

It is equivalent to use n = pB or Q̂ = p̂a + p̂b = p̂a + pb to define the polarization vectors

since they are orthogonal to both p = pa and pb. The factor εα(p, s; Q̂) is to be associated

with H, giving the hard scattering amplitude for a gluon with spin s. The remaining factor,

εµ(p, s; Q̂)∗, then becomes part of the splitting function.

19We do not need to be concerned with the soft limit, q → 0 with m → 0. Here, there is only a 1/
√

q

singularity, which is too weak to create a logarithmically divergent integration over final states. Nevertheless,

our approximation to M also matches the behavior of M in the soft limit.
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This calculation leads us to define the splitting function as

va = −
√

4παs

(p̂ − q)2
εµ(p, s; Q̂)∗ Dµν(p̂ − q;n) U(q, s′)γνU(p̂, ŝ) . (6.29)

This does not include the color matrix, which is included in the color operator t†l (fl →
f̂l + f̂m+1).

In the hard part of the diagram, we can again make approximations that are valid

for q2
⊥ → 0. In particular, we can adjust the momenta of the partons with indices other

than “a,” replacing p̂j by pj as defined by the momentum mapping Ra({p, f}m, {ζp, ζf}),
eq. (4.63). We will also want to use Q = pa + pb instead of Q̂ = p̂a + p̂b to define the

polarization vector for parton l as it enters the hard scattering. This is just a change in

notation rather than an approximation since Q is in the p-Q̂ plane.

6.4 Other qqg splittings

For splittings involving a qqg vertex, there are several other choices for the flavors fl, f̂l

and f̂m+1 and for whether the index l of the parton that splits is a final state index or

an initial state index. The results for vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) are listed in table 1. In

constructing this table, we keep track of two sign factors. First, there is a numerator sign

that we compute as in the examples in the preceding subsections. This is a minus sign

whenever a gluon or an antiquark enters the hard scattering from the initial state or leaves

the hard scattering to the final state and a plus sign when a quark enters or leaves the hard

scattering. Second, there is a color sign. There is always a color matrix ta. We count a color

3 line entering the hard scattering as a color 3̄ line leaving the hard scattering. Viewed this

way, the color matrix is actually (ta)T . However, the generator of color rotations for the

3̄ representation of SU(3) is −(ta)T . Thus we include −(ta)T as part of the color operator

t†l (fl → f̂l + f̂m+1) and include the minus sign as part of the splitting function vl. This

leaves a factor −1 in vl whenever a 3̄ line leaves the hard scattering. The sign included in

t†l (fl → f̂l + f̂m+1) is indicated in the last column of table 1. The net sign of vl is shown

in the table.

The construction for a final state splitting, as for an initial state splitting, makes use

of a lightlike vector nl that is in the plane of pl and Q̂ = p̂a + p̂b, which is the same as the

plane of pl and Q = pa + pb. The normalization of nl is not significant. Our choice for this

vector was defined in eq. (5.3).

6.5 Splitting with a ggg vertex

We construct the splitting function for a g → g + g splitting in a similar fashion. In the

case of a final state splitting, we use the ggg QCD vertex,

vαβγ(pa, pb, pc) = gαβ(pa − pb)
γ + gβγ(pb − pc)

α + gγα(pc − pa)
β , (6.30)

to define

vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) =

√
4παs

2p̂m+1 ·p̂l
εα(p̂m+1, ŝm+1; Q̂)∗εβ(p̂l, ŝl; Q̂)∗εν(pl, sl; Q̂)
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l fl f̂l f̂m+1 vl ×
1√

4παs
color

F q q g εµ(p̂m+1, ŝm+1; Q̂)∗
U(p̂l, ŝl)γ

µ[/̂pl + /̂pm+1 + m(fl)] /nlU(pl, sl)

2pl ·nl [(p̂l + p̂m+1)2 − m2(fl)]
ta

F q̄ q̄ g εµ(p̂m+1, ŝm+1; Q̂)∗
V (pl, sl) /nl[/̂pl + /̂pm+1 − m(fl)]γ

µV (p̂l, ŝl)

2pl ·nl [(p̂l + p̂m+1)2 − m2(fl)]
−ta

I q̄ q̄ g −εµ(p̂m+1, ŝm+1; Q̂)∗
U(pl, sl)/nl(/̂pl − /̂pm+1 + m(fl))γ

µU(p̂l, ŝl)

2pl ·nl [(p̂l − p̂m+1)2 − m2(fl)]
−ta

I q q g −εµ(p̂m+1, ŝm+1; Q̂)∗
V (p̂l, ŝl)γ

µ(/̂pl − /̂pm+1 − m(fl))/nlV (pl, sl)

2pl ·nl [(p̂l − p̂m+1)2 − m2(fl)]
ta

F g q q̄ −εµ(pl, sl; Q̂)Dµν(p̂l + p̂m+1, nl)
U(p̂l, ŝl)γ

νV (p̂m+1, ŝm+1)

(p̂l + p̂m+1)2
ta

I g q̄ q −εµ(pl, sl; Q̂)∗Dµν(p̂l − p̂m+1;nl)
U (p̂m+1, ŝm+1)γ

νU(p̂l, ŝl)

(p̂l − p̂m+1)2
ta

I g q q̄ −εµ(pl, sl; Q̂)∗Dµν(p̂l − p̂m+1;nl)
V (p̂l, ŝl)γ

νV (p̂m+1, ŝm+1)

(p̂l − p̂m+1)2
ta

I q g q −εµ(p̂l, ŝl; Q̂)
U(p̂m+1, ŝm+1)γ

µ[/̂pl − /̂pm+1 − m(fl)] /nlV (pl, sl)

2pl ·nl [(p̂l − p̂m+1)2 − m2(fl)]
ta

I q̄ g q̄ −εµ(p̂l, ŝl; Q̂)
U(pl, sl) /nl[/̂pl − /̂pm+1 + m(fl)]γ

µV (p̂m+1, ŝm+1)

2pl ·nl [(p̂l − p̂m+1)2 − m2(fl)]
−ta

Table 1: Splitting functions vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) for splittings involving a qq̄g vertex, with a

common factor
√

4παs removed. The values of l are either in the set of initial state indices I = {a, b}
or in the set of final state indices F = {1, . . . , m}. The flavors fl, f̂l, and f̂m+1 can be f = g or can

be a quark index, q ∈ {u, d, . . . }, or an antiquark index q̄ ∈ {ū, d̄, . . . }. Recall from eq. (3.2) that

in the case of an initial state parton, fl and f̂l denote the opposite of the incoming flavors of the

parton. For a row in which q denotes a quark index, q̄ denotes the corresponding antiquark index.

The next column gives the value of vl corresponding to the values of l, fl, f̂l, and f̂m+1 indicated.

The last column indicates the sign of the color matrix that is incorporated into the color operator

t†
l
. The lightlike vector nl is defined in eq. (5.3).

×vαβγ(p̂m+1, p̂l,−p̂m+1 − p̂l)Dγν(p̂l + p̂m+1;nl). (6.31)

For an initial state splitting, we have

vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) = −
√

4παs

2p̂m+1 ·p̂l
εα(p̂m+1, ŝm+1; Q̂)∗εβ(p̂l, ŝl; Q̂)εν(pl, sl; Q̂)∗

×vαβγ(p̂m+1,−p̂l, p̂l − p̂m+1)Dγν(p̂l − p̂m+1;nl). (6.32)

In each case, we have the exact QCD vertex and the exact propagator for the off-shell gluon

in nl · A = 0 gauge followed by a projection onto the physical gluon degrees of freedom

contained in the on-shell polarization vector.
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6.6 Soft splitting function

These splitting functions enable us to approximate the (m + 1)-parton matrix element in

the cases that p̂m+1 is collinear with p̂l or else p̂m+1 is soft. In the special case that p̂m+1 is

soft, or possibly soft and collinear with p̂l, a simpler splitting function can be used. When

p̂m+1 is soft, we have

∣∣M({p̂, f̂}m+1)
〉
∼

∑

l

∣∣M soft
l ({p̂, f̂}m+1)

〉
, (6.33)

where

∣∣M soft
l ({p̂, f̂}m+1)

〉
= t†l (fl → f̂l + f̂m+1)V †,soft

l ({p̂, f̂}m+1)
∣∣M({p, f}m)

〉
. (6.34)

The matrix elements of V †,soft
l are specified by a function vsoft

l ,

〈
{ŝ}m+1

∣∣V †,soft
l ({p̂, f̂}m+1)

∣∣{s}m

〉
=


 ∏

j /∈{l,m+1}

δŝj ,sj


 vsoft

l ({p̂, f̂}m+1, ŝm+1, ŝl, sl) .

(6.35)

If parton m + 1 is a quark or antiquark, vsoft
l = 0. When parton m + 1 is a gluon,

vsoft
l ({p̂, f̂}m+1, ŝm+1, ŝl, sl) =

√
4παs δŝl,sl

ε(p̂m+1, ŝm+1; Q̂)∗ ·p̂l

p̂m+1 ·p̂l
. (6.36)

The functions vsoft
l are not as powerful as the functions vl because they provide good

approximations only in the soft gluon limit. Nevertheless, we will have occasion to make

use of them.

7. Description of color

We will need a description of the quantum color state that is adapted to a description

of shower evolution. If we use an index notation, to each parton with label l there is

associated a color index al, which takes values 1, . . . , 3 for a quark or antiquark and takes

values 1, . . . , 8 for a gluon. There is also a spin index λl, which takes values ±1/2 for quark

and ±1 for a gluon. We can expand M in terms of color and spin basis vectors in the form

M({p, f}m)aa,ab,a1,...,am

λa,λb,λ1,...,λm
=

∑

{c}m

Ψ({c}m)aa,ab,a1,...,am

∑

{s}m

Ξ({s}m)λa,λb,λ1,...,λm

× M({p, f, s, c}m) ,

(7.1)

where the Ψ({c}m) form a basis for the space of color singlet amplitudes with color labels

{c}m and the Ξ({s}m) form a basis for the spin space with spin labels {s}m. The quantities

M({p, f, s, c}) are the expansion coefficients. In a vector notation, this is

∣∣M({p, f}m)
〉
c,s

=
∑

{c}m

∣∣{c}m

〉
c
⊗

∑

{s}m

∣∣{s}m

〉
s
M({p, f, s, c}m) . (7.2)

– 45 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

Here
∣∣M({p, f}m)

〉
c,s

lies in the combined color-spin space while
∣∣{c}m

〉
c
is a vector in color

space and
∣∣{s}m

〉
s

is a vector in spin space.

As discussed in section 5, we use a conventional treatment of spin. We assume that

the spin labels λ already represent parton helicities using suitable conventions for choosing

corresponding Dirac spinors and polarization vectors. Then the basis vector labels can be

simply {s}m = {sa, sb, s1, . . . , sm} and the basis vectors can be

Ξ({s}m)λa,λb,λ1,...,λm
= δλa

sa
δλb
sb

δλ1
s1

· · · δλm
sm

. (7.3)

Then we have an orthonormal basis:
〈
{s′}m

∣∣{s}m

〉
is 1 if the spin labels are all the same

and zero otherwise.

We use a treatment of color that is conventional but more subtle than the treatment

for spin. We turn to this subject in this section.

7.1 Color basis

We first note that as far as color is concerned, an initial state quark is equivalent to a final

state antiquark and an initial state antiquark is equivalent to a final state quark. Thus,

in the prose description in this section we use “quark” and “q” to refer to a final state

quark or an initial state antiquark and we use “antiquark” and “q̄” to refer to a final state

antiquark or an initial state quark.20

We next note that the amplitude
∣∣M({p, f}m)

〉
us always invariant under an overall

rotation of all of the parton colors. Thus what we really need is a basis for the space of

color singlet amplitudes in the color space. There is a widely used and intuitively appealing

way to do this that, furthermore, matches with the idea of color strings forming between

outgoing partons [27].

The color basis vectors
∣∣{c}m

〉
c

are labeled by a color string configurations {c}m. A

color string configuration can be described as a set {S1, . . . , Sn} of one or more strings S.

There are two types of strings, open strings and closed strings. An open string is an ordered

set of parton indices that we denote by S = [l1, l2, . . . , ln−1, ln]. Here l1 is the label of a

quark, ln is the label of an antiquark, and l2, . . . , ln−1 are labels of gluons. A closed string

is an ordered set of at least two parton indices that we denote by S = (l1, l2, . . . , ln−1, ln).

Here all of the indices label gluons and we treat sets that differ by a cyclic permutation of

the indices as being the same. Thus a complete color string configuration for a quark, an

antiquark, and five gluons might be {[1, 6, 3, 7], (4, 2, 5)}. This is a notation for a possible

{c}5.

Now we can define the basis states. We take Ψ({c}m) to be a product

Ψ({c}m)a1,...,am = Ψ(S1)
{a}[1] Ψ(S2)

{a}[2] . . . Ψ(SK){a}[K] . (7.4)

Here we have denoted the set of color indices represented in string k by

{a}[k] = {al1 , . . . , aln} (7.5)

if string k is [l1, . . . , ln] or (l1, . . . , ln).

20Recall from eq. (3.2) that in the case of an initial state parton, fl and f̂l denote the opposite of the

incoming flavors of the parton.
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Figure 6: Illustration an open string color basis state (left) and a closed sting color basis state

(right).

We can now define the component factors V (S). For notational convenience, we sup-

pose that li = i so that the partons along the string are numbered sequentially, [1, 2, . . . , n]

or (1, 2, . . . , n).

We first consider an open string, as illustrated on the left in figure 6. We define

Ψ(S){a} = n(S)−1/2 [ta2ta3 · · · tan−1 ]a1an
, (7.6)

where the ta are the SU(3) generator matrices for the fundamental representation and we

take the a1, an matrix element of the matrix product of the generator matrices (normalized

to TR = 1/2). The normalization factor n(S) is

n(S) = NcC
n−2
F . (7.7)

With this normalization, 〈
S

∣∣S
〉
≡

∑

{a}

|Ψ(S){a}|2 = 1 . (7.8)

For a closed string with the same parton labels (now all gluons) we define, as illustrated

on the right in figure 6,

Ψ(S){a} = n(S)−1/2 Tr [ta1ta2 · · · tan ] , (7.9)

where, again, the ta are the SU(3) generator matrices for the fundamental representation21

and where

n(S) = Cn
F . (7.10)

With this normalization,

〈
S

∣∣S
〉
≡

∑

{a}

|Ψ(S){a}|2 = 1 −
( −1

2NcCF

)n−1

. (7.11)

This is approximately 1 in the limit of a large number of colors.

21One could use the adjoint representation here. However, an adjoint representation string is approx-

imately equivalent to two fundamental representation strings and having two strings when one would do

makes the description more complicated.
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Figure 7: Inner products for color basis states. The left hand picture illustrates the inner product

of the [1, 2, 3, 4] with itself. The color diagram shown gives C2
FNc, which is just canceled by the

normalization factor 1/n(S) from eq. (7.7). The right hand picture illustrates the inner product

of the [1, 2, 3, 4] with [1, 3, 2, 4]. The color diagram gives −CF/2. Multiplying by 1/n(S) gives

−1/(N2
c − 1).

A general color basis state is a product of string states.22 It includes a normalization

factor n({c}m)−1/2,

n({c}m) = n(S1)n(S2) · · · n(SK) . (7.12)

The normalization of the states is

〈
{c}m

∣∣{c}m

〉
=

∏

k

〈
Sk

∣∣Sk

〉
, (7.13)

where the factors are given in eqs. (7.8) and (7.11). Thus
〈
{c}m

∣∣{c}m

〉
≈ 1 in the large Nc

limit.

The basis vectors
∣∣{c}m

〉
are not exactly normalized and they are not orthogonal.

However, the inner product between two different basis vectors is small in the limit of a

large number of colors,

〈
{c′}m

∣∣{c}m

〉
= O(1/N2

c ) {c′}m 6= {c}m . (7.14)

For instance, suppose {c}m = [1, 2, 3, 4] and suppose {c′}m = [1, 3, 2, 4], with the posi-

tions of the two gluons reversed. Then
〈
{c′}m

∣∣{c}m

〉
= −1/(N2

c − 1). The calculation is

illustrated in figure 7.

7.2 Parton insertion operators

It will prove useful to define certain operators that act on an m parton color state with

partons with labels {a,b, 1, . . . ,m} and add one parton with label m + 1. We let a†+(l)

22The building blocks used are the invariant matrices δij to connect a quark and an antiquark and ta
ij

to connect a quark, antiquark and gluon. One could also use the completely antisymmetric matrix ǫijk

to connect three quarks or three antiquarks. However, we don’t need states made using ǫijk because the

amplitudes M have net baryon number zero.
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insert a gluon just to the right of parton l on whatever string contains parton l,

a†+(l)
∣∣{. . . , [a1, . . . , l, . . . , an], . . . }

〉
=

∣∣{. . . , [a1, . . . , l,m + 1, . . . , an], . . . }
〉

,

a†+(l)
∣∣{. . . , (a1, . . . , l, . . . , an), . . . }

〉
=

∣∣{. . . , (a1, . . . , l,m + 1, . . . an), . . . }
〉

,

a†+(l)
∣∣{. . . , [l, . . . , an], . . . }

〉
=

∣∣{· · · [l,m + 1, . . . , an], . . . }
〉

,

a†+(l)
∣∣{. . . , [a1, . . . , l], . . . }

〉
= 0 .

(7.15)

The first equation applies to the case that l labels a gluon on an open string while the

second equation applies to the case that l labels a gluon on an closed string. The third

equation applies when l labels a quark at the end of an open string. The fourth equation

applies when l labels an antiquark at the end of an open string. In this case, there is no

place to put the gluon, so the result is defined to be zero. Similarly, we define an operator

a†−(l) that inserts a gluon just to the left of parton l on whatever string contains parton l,

a†−(l)
∣∣{. . . , [a1, . . . , l, . . . , an], . . . }

〉
=

∣∣{. . . , [a1, . . . ,m + 1, l, . . . an], . . . }
〉

,

a†−(l)
∣∣{. . . , (a1, . . . , l, . . . , an), . . . }

〉
=

∣∣{. . . , (a1, . . . ,m + 1, l, . . . an), . . . }
〉

,

a†−(l)
∣∣{. . . , [l, . . . , an], . . . }

〉
= 0 ,

a†−(l)
∣∣{. . . , [a1, . . . , l], . . . }

〉
=

∣∣{. . . , [a1, . . . ,m + 1, l], . . . }
〉

.

(7.16)

We define an operator a†q(l) that breaks a string at the position of a gluon with label l,

creating a quark that we take to inherit the label l and an antiquark with the new label

m + 1. If l is a gluon on an open string, this creates two open strings. If l is a gluon

on a closed string, this turns the closed string into an open string. If l labels a quark or

antiquark, we define the result to be zero. Thus

a†q(l)
∣∣{. . . , [a1, . . . , l, . . . , an], . . . }

〉
=

∣∣{. . . , [a1, . . . ,m + 1], [l, . . . an], . . . }
〉

,

a†q(l)
∣∣{. . . , (a1, . . . , l, . . . , an), . . . }

〉
=

∣∣{. . . , [l, . . . an, a1, . . . ,m + 1], . . . }
〉

,

a†q(l)
∣∣{. . . , [l, . . . , an], . . . }

〉
= 0 ,

a†q(l)
∣∣{. . . , [a1, . . . , l], . . . }

〉
= 0 .

(7.17)

Finally, we define an operator a†s(l) that removes a gluon with label l from its string, and

creates a new open string consisting of just a quark that we take to inherit the label l and

an antiquark with the new label m+1. If l labels a quark or antiquark, we define the result

to be zero. Thus

a†s(l)
∣∣{. . . , [a1, . . . , l, . . . , an], . . . }

〉
=

∣∣{. . . , [a1, . . . , an], [l,m + 1] · · ·
〉

,

a†s(l)
∣∣{. . . , (a1, . . . , l, . . . , an), . . . }

〉
=

∣∣{. . . , (a1, . . . , an), [l,m + 1], . . . }
〉

,

a†s(l)
∣∣{. . . , [l, . . . , an], . . . }

〉
= 0 ,

a†s(l)
∣∣{. . . , [a1, . . . , l], . . . }

〉
= 0 .

(7.18)

We will see the utility of these operators presently, when we study the color flow in parton

splitting.
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7.3 Color evolution for the quantum states

In this subsection, examine how the color vector changes with successive parton splittings.

Consider starting with a color state
∣∣ψ

〉
for m partons and letting a final state parton with

label l and flavor fl emit a gluon with label m + 1.23 After the gluon emission, parton l

retains its label l and its flavor. This produces a new color state

∣∣ψ̂
〉

= t†l (fl → fl + g)
∣∣ψ

〉
. (7.19)

We can define the color splitting operator t†l (fl → fl + g) precisely by writing this out in

component notation

ψ̂aa,ab,a1,...,al,...,am,am+1 =
∑

ãl

T (fl)
am+1

al,ãl
ψaa,ab,a1,...,ãl,...,am . (7.20)

The matrix T (fl)
am+1 here is the generator matrix in the 8 representation if fl = g, in the

3 representation if fl ∈ {u,d, . . . }, and in the 3̄ representation if fl ∈ {ū, d̄, . . . }.24
This notation applies for an initial state splitting too since, from eq. (3.2), in the case

of an initial state parton, fl and f̂l denote the opposite of the incoming flavors of the

parton. In this case, the arrow in fl → fl + g and more generally in fl → f̂l + f̂m+1 refers

to backward evolution.

Now consider what happens when the splitting operator is applied to one of the color

basis vectors,
∣∣{c}m

〉
. For the case that fl = g we have

∑

al

T (g)
ãm+1

ãl ,al
tal =

∑

al

ifãl,ãm+1,al
tal = tãltãm+1 − tãm+1tãl . (7.21)

Thus t†l (g → g + g)
∣∣{c}m

〉
is a normalization factor times a difference of two basis vectors

[
n({ĉ+}m+1)

n({c}m)

]1/2 ∣∣{ĉ+}m+1

〉
−

[
n({ĉ−}m+1)

n({c}m)

]1/2 ∣∣{ĉ−}m+1

〉
. (7.22)

In {ĉ±}m+1, gluon l is replaced by gluons l and m + 1. Specifically, if in {c}m gluon l

appears in an open string as [i1, . . . , l, . . . , in] then in {ĉ+}m+1 this string is replaced by

[i1, . . . , l,m + 1, . . . , in] and in {ĉ−}m+1 this string is replaced by [i1, . . . ,m + 1, l, . . . , in].

The normalization factor is
n({ĉ±}m+1)

n({c}m)
= CF . (7.23)

Analogous remarks apply for a closed string. We can state this result using the operators

defined in eqs. (7.15) and (7.16),

t†l (g → g + g) =
√

CF a†+(l) −
√

CF a†−(l) . (7.24)

This is illustrated in figure 8.

23In [14], the final state labels are called i and j. We identify i with l, and j with m+1. The labels for the

initial m partons are {a, b, 1, . . . , m} and for the subsequent state after splitting are {a, b, 1, . . . , m, m + 1}.
The partons not involved in the splitting keep their labels.

24Specifically, T (q)a
ij = ta

ij , T (q̄)a
ij = −ta

ji and T (g)a
bc = ifbac, where q here represents any quark flavor

and q̄ represents any antiquark flavor.
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Figure 8: Illustration of eq. (7.24). A gluon l spits into gluon l and gluon m + 1. The result is

to place the new gluon m + 1 either to the right of gluon l, with insertion operator a†
+(l) or to the

left, with insertion operator a†
−(l). The normalization factors

√
CF are not indicated.

For a quark splitting to a quark plus a gluon we have a similar operator, one more

generator matrix is inserted at the quark end of the string, so that

t†l (q → q + g) =
√

CF a†+(l) . (7.25)

For an antiquark splitting to an antiquark plus a gluon, one more generator matrix is

inserted at the antiquark end of the string, so that

t†l (q̄ → q̄ + g) = −
√

CF a†−(l) . (7.26)

In these equations, q represents any quark flavor and q̄ represents any antiquark flavor.

The operators for gluon emission obey an important identity. The matrix element M

and our approximations to it are always color singlets,

∑

l

∑

ãl

T (fl)
am+1

al,ãl
ψaa,ab,a1,...,ãl,...,am = 0 . (7.27)

Thus ∑

l

t†l (fl → fl + g)
∣∣ψ

〉
= 0 . (7.28)

We will use this identity in the following sections to rearrange the splitting formulas.

The last possibility for parton splitting is that of a gluon splitting into a quark-

antiquark pair with flavors q and q̄. The color splitting operator is defined by

∣∣ψ̂
〉

= t†l (g → q + q̄)
∣∣ψ

〉
, (7.29)

where

ψ̂aa,ab,a1,...,am,am+1 =
∑

ãl

tãl
al,am+1

ψaa,ab,a1,...,ãl,...,am . (7.30)

Our convention here is that the quark inherits the gluon label, l, and the antiquark gets

the new label, m + 1. To analyze this, we use

tãl
al,am+1

tãl

c,d =
1

2
δc,am+1δal,d −

1

2Nc
δal,am+1δc,d . (7.31)
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Thus tl(g → q + q̄)
∣∣{c}m

〉
is a combination of two basis vectors,

1

2

[
n({ĉ1}m+1)

n({c}m)

]1/2 ∣∣{ĉ1}m+1

〉
− 1

2Nc

[
n({ĉ2}m+1)

n({c}m)

]1/2 ∣∣{ĉ2}m+1

〉
. (7.32)

In {ĉ1}m+1, the string in which gluon l resides is split. Specifically, if in {c}m, gluon l

appears in an open string as [i1, . . . , iA, l, iB . . . in], then in {ĉ1}m+1 this string is replaced

by two strings, [i1, . . . , iA,m + 1][l, iB , · · · , in]. On the other hand, if in {c}m, gluon l

appears in a closed string as (i1, . . . , iA, l, iB , . . . in), then in {ĉ1}m+1 this string is replaced

by an open string, [l, iB , . . . , in, i1 . . . , iA,m + 1]. In either case,

n({ĉ1}m+1)

n({c}m)
=

Nc

CF
. (7.33)

In the second color state in eq. (7.32),
∣∣{ĉ2}m+1

〉
, gluon l is simply removed from its

string and a new trivial qq̄ string is created. Specifically, if in {c}m gluon l appears in an

open string as [i1, . . . , iA, l, iB . . . in], then in {ĉ2}m+1 this string is replaced by two strings,

[i1, . . . , iA, iB , · · · , in] and [l,m + 1]. On the other hand, if in {c}m gluon l appears in an

closed string as (i1, . . . , iA, l, iB , . . . in), then in {ĉ2}m+1 this string is replaced by a closed

string (i1, . . . , iA, iB , . . . in) and the open string [l,m + 1]. In either case,

n({ĉ2}m+1)

n({c}m)
=

Nc

CF
. (7.34)

We can state this result using the operators defined in eqs. (7.17) and (7.18),

t†l (g → q + q̄) =

√
Nc

4CF
a†q(l) −

√
1

4NcCF
a†s(l) . (7.35)

We can now see the advantage of this choice of color basis, beyond the fact that it is

widely used for NLO calculations. In this basis, the description of parton splitting is very

simple. For splittings q → qg and q̄ → q̄g, we simply add a gluon to a string. For splittings

g → gg, we replace one gluon on a string by two. There are two terms corresponding to

the two possible orders for the two gluons on the string. For a splitting g → q̄q, we split a

string or we remove the gluon from its string and create a new qq̄ string. The normalization

factors may be considered to be just a matter of bookkeeping. However, one should note

that the splittings q → qg, q̄ → q̄g. and g → gg come with numerical factors
√

CF in

the amplitude. These factors are large for large Nc. The splitting g → qq̄ comes with a

numerical factor for the first term, [Nc/(4CF)]1/2 that is not large in the large Nc limit.

(The numerical factor for the second term is small in the large Nc limit.) Thus the color

factor for the splitting g → qq̄ is smaller than the color factors for the other splittings.

This makes g → qq̄ splitting somewhat disfavored even though there are several qq̄ flavor

choices available.

8. Evolution for the statistical states

We have seen how parton splitting works at the quantum amplitude level. We now need

to use these results to formulate the effect of splitting on the density operator ρ and thus
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the statistical state
∣∣ρ

)
. Suppose that we have the function

(
{p, f, s′, c′, s, c}m

∣∣ρ
)

(8.1)

describing m final state partons plus the two initial state partons. After one splitting, we

will have m + 1 final state partons, described by
(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣ρ
)

. (8.2)

We need this function within the soft and collinear splitting approximations that we have

used for the amplitudes.

Any of the partons can split. In particular, parton i in
∣∣M({p, f}m)

〉
and parton j in〈

M({p, f}m)
∣∣ can split. In the simplest case (and the only case incorporated into typical

parton shower Monte Carlo event generators), i = j. However, one can have i 6= j and still

get the same momenta and flavors {p̂, f̂}m+1 from both splittings and still get a logarithmic

divergence if one were to integrate over {p̂}m+1. This happens when parton i emits a gluon

m + 1 in
∣∣M({p, f}m)

〉
and parton j emits gluon m + 1 in

〈
M({p, f}m)

∣∣. An interference

graph of this sort has no collinear divergence from p̂m+1 being collinear to p̂i or p̂j. However

it does have a soft divergence from p̂m+1 → 0. For this reason, we need to include the case

i 6= j.

For each splitting, we relate {p̂, f̂}m+1 to the starting momenta and flavors {p, f}m

and splitting variables {ζp, ζf} using one of the mappings

{p̂, f̂}m+1 = Rl({p, f}m, {ζp, ζf}) , (8.3)

as specified in section 4. In the case i 6= j, we can use either the mapping with l = i or the

mapping with l = j.25 We find it most useful to average over these two possibilities. We

use the mapping with l = i with a weight Aij and the mapping with l = j with weight Aji.

In general, the weights can depend on the momenta {p̂}m+1. In that case, the momentum

mapping Rl with l = i is used for Aij and the momentum mapping Rl with l = j is used

for Aji . In this paper, the default value is Aij = 1/2, but our notation allows for other

choices. In the case i = j, we use the mapping with l = i = j.

We are thus led to write the density operator ρ̂ after splitting as a sum of contributions

ρ̂
(l)
ij , where the superscript indicates the treatment of the kinematics and the subscripts

indicate which partons split,

ρ̂({p̂, f̂}m+1) =
∑

l

ρ̂
(l)
ll ({p̂, f̂}m+1)

+
∑

i,j
i6=j

{
Aij({p̂}m+1) ρ̂

(i)
ij ({p̂, f̂}m+1) + Aji({p̂}m+1) ρ̂

(j)
ij ({p̂, f̂}m+1)

}

=
∑

l

{
ρ̂
(l)
ll ({p̂, f̂}m+1)

+
∑

k 6=l

Alk({p̂}m+1)
[
ρ̂
(l)
lk ({p̂, f̂}m+1) + ρ̂

(l)
kl ({p̂, f̂}m+1)

]}
.

(8.4)

25Either mapping suffices because in either case the map becomes the identity map in the soft limit

p̂m+1 → 0.
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Here the sums run over the set {a,b, 1, . . . ,m}. We use eq. (6.4) for the contributions ρ̂
(l)
ij

in the case i = j,

ρ
(l)
ll ({p̂, f̂}m+1) = t†l (fl → f̂l + f̂m+1)V †

l ({p̂, f̂}m+1) ρ({p, f}m)

× Vl({p̂, f̂}m+1) tl(fl → f̂l + f̂m+1)

× Sl({f̂}m+1) .

(8.5)

Here Sl({f̂}m+1) is a counting factor that is determined by the conventions we have used

to label the final state partons,

Sl({f̂}m+1) =





1/2 , l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g

1 , l ∈ {1, . . . ,m}, f̂l 6= g, f̂m+1 = g

0 , l ∈ {1, . . . ,m}, f̂l = g, f̂m+1 6= g

1 , l ∈ {1, . . . ,m}, f̂l = q, f̂m+1 = q̄

0 , l ∈ {1, . . . ,m}, f̂l = q̄, f̂m+1 = q

1 , l ∈ {a,b}

. (8.6)

This factor is zero for f̂l = g and f̂m+1 = q or f̂m+1 = q̄, even though flavor conservation

allows this combination in a q → q + g or q̄ → q̄ + g splitting, because we have chosen

to label the final daughter gluon in these cases as parton m + 1. Similarly, this factor is

zero for f̂l = q̄ and f̂m+1 = q, even though flavor conservation allows this combination

in a g → q + q̄ splitting, because we have chosen to label the final daughter antiquark

in this case as parton m + 1. In the case of a final state g → g + g splitting on line l,

the splitting probability is symmetric under interchange of the labels l and m + 1, so that

integrating over p̂l and p̂m+1 would count the same physical configuration twice. The factor

1/2 corrects for this symmetry. This issue is discussed in some detail in appendix B.

For i 6= j, we can use the simpler splitting operator V soft as in eq. (6.33),

ρ̂
(l)
ij ({p̂, f̂}m+1) = t†i (fi → f̂i + f̂m+1)V †,soft

i ({p̂, f̂}m+1) ρ({p, f}m)

× V soft
j ({p̂, f̂}m+1) tj(fj → f̂j + f̂m+1) .

(8.7)

Note that V †,soft
i and V soft

j both vanish if parton m + 1 is not a gluon. Thus ρ̂
(l)
ij = 0 for

i 6= j unless parton m + 1 is a gluon.

This definition for ρ̂
(l)
ij defines a mapping of the statistical states in which

∣∣ρ
)

becomes

∣∣ρ̂(l)
ij

)
= S(l)

ij

∣∣ρ
)

, (8.8)

after splitting. Then

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣S(l)
ij

∣∣ρ
)

=
1

m!

∫ [
d{p, f, s′, c′, s, c}m

]

×
(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣S(l)
ij

∣∣{p, f, s′, c′, s, c}m

)

×
(
{p, f, s′, c′, s, c}m

∣∣ρ
)

.

(8.9)
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The splitting operator S(l)
ij is defined by giving its matrix elements,

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣S(l)
ij

∣∣{p, f, s′, c′, s, c}m

)
=

(
{ĉ′, ĉ}m+1

∣∣G(i, j; {f̂}m+1)
∣∣{c′, c}m

)

×
(
{ŝ′, ŝ}m+1

∣∣W(i, j; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

×
(
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)

× (m + 1)
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

.

(8.10)

We discuss each factor in turn.

The first factor, G(i, j; {f̂}m+1), describes how the splittings change the parton colors,
(
{ĉ′, ĉ}m+1

∣∣G(i, j; {f̂}m+1)
∣∣{c′, c}m

)
=

D

〈
{ĉ}m+1

∣∣t†i (fi → f̂i + f̂m+1)
∣∣{c}m

〉

×
〈
{c′}m

∣∣tj(fj → f̂j + f̂m+1)
∣∣{ĉ′}m+1

〉
D

.
(8.11)

In the next factor, W(i, j; {f̂ , p̂}m+1), contains the spin-dependent splitting functions.

The simplest case occurs for i = j with anything other than a final state g → g+g splitting.

For that case
(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

= Sl({f̂}m+1)
〈
{ŝ}m+1

∣∣V †
l ({p̂, f̂}m+1)

∣∣{s}m

〉〈
{s′}m

∣∣Vl({p̂, f̂}m+1)
∣∣{ŝ′}m+1

〉
.

For i = j in general we define
(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

= Sl({f̂}m+1)

{〈
{ŝ}m+1

∣∣V †
l ({p̂, f̂}m+1)

∣∣{s}m

〉〈
{s′}m

∣∣Vl({p̂, f̂}m+1)
∣∣{ŝ′}m+1

〉

+ θ(l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g)
(
{ŝ′, ŝ}m+1

∣∣W̃(l, l; {p̂}m+1)
∣∣{s′, s}m

)}
.

(8.12)

The second term is included in the special case of a final state g → g + g splitting. In

this case, the first term is symmetric under an interchange l ↔ m + 1 between the two

final state gluons. It gives a leading singularity when gluon m + 1 is soft but also gives

a leading singularity when gluon l is soft. We seek to use the freedom to assign labels

to ensure that gluon m + 1 can be soft but not gluon l. The operator W̃ in the added

term is antisymmetric under l ↔ m + 1, so that it gives zero contribution after integration

over the final state momenta. The simplest choice for W̃ would be the first term times

[2 θ(p̂m+1 ·Q < p̂l ·Q)−1] which is antisymmetric under l ↔ m+1. Then the total W would

be just the first term times 2 θ(p̂m+1 · Q < p̂l · Q). Clearly this eliminates the singularity

when gluon l is soft. However, we adopt a slightly more subtle procedure. Write the tensor

that defines the three gluon vertex as v = v1 + v2 + v3,

vαβγ
1 (pa, pb, pc) = gαβ(pa − pb)

γ ,

vαβγ
2 (pa, pb, pc) = gβγ(pb − pc)

α ,

vαβγ
3 (pa, pb, pc) = gγα(pc − pa)

β .

(8.13)
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Then we can define partial vertex functions analogous to those in eq. (6.31) by

vJ,l({p̂, f̂}m+1, ŝm+1, ŝl, sl) =

√
4παs

2p̂m+1 ·p̂l
εα(p̂m+1, ŝm+1; Q̂)∗εβ(p̂l, ŝl; Q̂)∗εν(pl, sl; Q̂)

×vαβγ
J (p̂m+1, p̂l,−p̂m+1 − p̂l)Dγν(p̂l + p̂m+1;nl). (8.14)

for J ∈ {1, 2, 3}. Finally we define partial operators V by the analogue of eq. (6.6),

〈
{ŝ}m+1

∣∣V †
J,l({p̂, f̂}m+1)

∣∣{s}m

〉
=


 ∏

j /∈{l,m+1}

δŝj ,sj


 vJ,l({p̂, f̂}m+1, ŝm+1, ŝl, sl) . (8.15)

Now the first term in W comes from
∑3

J,K=1 vJ × v∗K . The term with a leading singularity

when gluon m + 1 is soft is v2 × v∗2 . The term with a leading singularity when gluon l is

soft is v3 × v∗3 . Therefore we need to get rid of v3 × v∗3 and double v2 × v∗2 to make up for

the factor 1/2 in Sl. We thus define

(
{ŝ′, ŝ}m+1

∣∣W̃(l, l; {p̂}m+1)
∣∣{s′, s}m

)
=

〈
{ŝ}m+1

∣∣V †
2,l({p̂, f̂}m+1)

∣∣{s}m

〉〈
{s′}m

∣∣V2,l({p̂, f̂}m+1)
∣∣{ŝ′}m+1

〉

−
〈
{ŝ}m+1

∣∣V †
3,l({p̂, f̂}m+1)

∣∣{s}m

〉〈
{s′}m

∣∣V3,l({p̂, f̂}m+1)
∣∣{ŝ′}m+1

〉
.

(8.16)

This is computationally very simple even if it takes some time to explain.

For i 6= j, we use the simpler splitting operators V soft,

(
{ŝ′, ŝ}m+1

∣∣W(i, j; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
=

〈
{ŝ}m+1

∣∣V †,soft
i ({p̂, f̂}m+1)

∣∣{s}m

〉

×
〈
{s′}m

∣∣V soft
j ({p̂, f̂}m+1)

∣∣{ŝ′}m+1

〉
.

(8.17)

In the next factor, the matrix element
(
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)
is a delta function that

enforces the requirement that the momenta and flavors {p, f}m are related to the momenta

and flavors after the splitting by the mapping Ql. The definition is

1

m!

∫ [
d{p, f}m

] (
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)
h
(
{p, f}m

)
= h

(
{p′, f ′}m

)
, (8.18)

where h({p, f}m) is an arbitrary test function and

{{p′, f ′}m, {ζp, ζf}} = Ql({p̂, f̂}m+1) (8.19)

as specified in section 4. Another useful identity for Pl is26

1

(m + 1)!

∫ [
d{p̂, f̂}m+1

]
g
(
{p̂, f̂}m+1

) (
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)

=
1

(m + 1)

∑

ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) g

(
{p̂′, f̂ ′}m+1

))
,

(8.20)

26To derive eq. (8.20) from eq. (8.18), we add one more integration to eq. (8.18), in the form
R ˆ

d{p̂, f̂}m+1

˜

g
`

{p̂, f̂}m+1

´

. Then on the right hand side, we change integration variables from {p̂′, f̂ ′}m+1

to {{p, f}m, {ζp, ζf}} according to eqs. (4.37) and (4.70). This gives a result that is equivalent to eq. (8.20).
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where g
(
{p̂, f̂}m+1

)
is an arbitrary test function and

{p̂′, f̂ ′}m+1 = Rl({{p, f}m, {ζp, ζf}}) (8.21)

is the inverse transformation to Ql, as specified in section 4. In this form, we display

an integration over the splitting variables that would occur in an implementation of this

formalism as a computer program.

The counting factor (m + 1) is the ratio of the factor (m + 1)! in the normalization

integral for
(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣S(l)
ij

∣∣ρ
)

to the factor m! in the normalization integral for(
{p, f, s′, c′, s, c}m

∣∣ρ
)
. This factor is derived in appendix B. The factor with parton distri-

butions comes from eqs. (3.17) and (3.18). In the case of a final state splitting, this factor

is 1.

We can now assemble our result. From eq. (8.4) we have

∣∣ρ̂
)

= S
∣∣ρ

)
, (8.22)

where the total splitting operator is

S =
∑

l

Sl , Sl = S(l)
ll +

∑

k 6=l

Alk

{
S(l)

lk + S(l)
kl

}
. (8.23)

Here the sums run over the set {a,b, 1, . . . ,m} and Alk is the operator on the space of

statistical states that multiplies a basis vector
∣∣{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

)
by the corresponding

function Alk({p̂}m+1).

We manipulate the result a bit. Because the quantum amplitudes are color singlets, as

reflected in eq. (7.28), when f̂m+1 = g the gluon emission operators G(l, k; {f̂}m+1) obey

∑

k

G(l, k; {f̂}m+1) = 0 ,
∑

k

G(k, l; {f̂}m+1) = 0 . (8.24)

Then the G(l, k; {f̂}m+1) are not independent. For this reason, there can be color coherence

cancellations that are always present but are not evident if we use all of the possible

G(l, k; {f̂}m+1) operators. Accordingly, when f̂m+1 = g, we eliminate G(l, l; {f̂}m+1) with

the replacement

G(l, l; {f̂}m+1) = −1

2

∑

k 6=l

G(l, k; {f̂}m+1) −
1

2

∑

k 6=l

G(k, l; {f̂}m+1) . (8.25)

We will see in section 11 how this allows cancellations to occur at a low level of a calculation.
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With this replacement, the total splitting operator is given for the case f̂m+1 = g by

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣Sl

∣∣{p, f, s′, c′, s, c}m

)

= (m + 1)
(
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

) nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ2
F )fb/B(ηb, µ2

F )

×
∑

k∈{a,b,1,...,m}
k 6=l

{(
{ĉ′, ĉ}m+1

∣∣G(l, k; {f̂}m+1)
∣∣{c′, c}m

)

×
[
Alk({p̂}m+1)

(
{ŝ′, ŝ}m+1

∣∣W(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

− 1

2

(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)]

+
(
{ĉ′, ĉ}m+1

∣∣G(k, l; {f̂}m+1)
∣∣{c′, c}m

)

×
[
Alk({p̂}m+1)

(
{ŝ′, ŝ}m+1

∣∣W(k, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

− 1

2

(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)]}
.

(8.26)

In the case that f̂m+1 6= g, that is {f̂l, f̂m+1} = {q, q̄}, this becomes

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|Sl

∣∣{p, f, s′, c′, s, c}m

)
= (m + 1)

(
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)

× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ
2
F )fb/B(ηb, µ2

F )

×
(
{ĉ′, ĉ}m+1

∣∣G(l, l; {f̂}m+1)
∣∣{c′, c}m

)

×
(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
.

(8.27)

In the following section, we will use S to define the splitting operator at shower time t,

HI(t). Then in section 10 we will study the evolution of the color structure that is expressed

in eqs. (8.26) and (8.27). In section 11, we will examine the how quantum coherence for

soft gluon emission is contained in eq. (8.26).

9. The operator HI(t)

It remains to define the operator HI(t). The integral of this operator over t gives the total

probability for a splitting at any scale,

∫ ∞

0
dt HI(t) = S . (9.1)

To get the probability for a splitting at the scale corresponding to shower time t, we simply

need to insert a delta function that defines t. Our default choice is

t = log

(
Q2

0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

)
. (9.2)
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Here the virtuality is defined using p̂l + p̂m+1 for a final state splitting and p̂l − p̂m+1 for

an initial state splitting. We take Q2
0 to be the hardness scale of the initial hard scattering

that starts the parton shower, so that the initial value of t is zero. One could take Q2
0

to be the minimum of the values 2pi · pj for final state particles i, j from the initial hard

scattering. Here we can neglect all quark masses compared to Q0. Other definitions of t

are possible. For instance, many authors use a measure of the transverse momentum in a

parton splitting.

When we use the definition (9.2) of t, we obtain the corresponding definition of HI(t).

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣HI(t)
∣∣{p, f, s′, c′, s, c}m

)

=
∑

l∈{a,b,1,...,m}

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣Sl

∣∣{p, f, s′, c′, s, c}m

)

× δ

(
t − log

(
Q2

0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

))
,

(9.3)

where Sl is defined in eqs. (8.26) and (8.27). In these equations there are parton distribution

functions evaluated at a factorization scale µF, which we define according to eq. (3.38) in

terms of t. In addition, there is a factor αs, which needs to be evaluated at a scale µR

that has not been made explicit in the notation. The argument presented in section (3.4)

indicates that the momentum scale at the splitting is just the resolution scale that we use

for µF. Thus we take

µ2
F = µ2

R = Q2
0 e−t . (9.4)

10. Color evolution of the statistical states

We are now in a position to say something about the color structure of the statistical

states and the evolution of this structure. Notice that in general
(
{p, f, s′, c′, s, c}m

∣∣ρ
)

can

be non-zero for {c′}m 6= {c}m. Even if we start with {c′}n = {c}n, at some early stage

of evolution, splitting will generate states with {c′}m 6= {c}m at later stages. However,

in the end we measure something that is color independent. This means taking the color

trace of ρ. That is, we multiply
(
{p, f, s′, c′, s, c}m

∣∣ρ
)

by
〈
{c′}m

∣∣{c}m

〉
and sum over the

color configurations {c′}m and {c}m, as in eq. (3.34). Recall that when {c′}m 6= {c}m, the

inner product
〈
{c′}m

∣∣{c}m

〉
is of order 1/N2

c to some power and is thus small in the large

N2
c limit and numerically small for Nc = 3. Thus configurations with {c′}m 6= {c}m are

not very important. Furthermore, if we start with a state with {c′}m 6= {c}m, splitting

cannot generate {ĉ′}m+1 = {ĉ}m+1 at the next stage. Thus one can speak of a “leading

color approximation” in which contributions with {c′}m 6= {c}m are always dropped. This

is what happens in most parton shower Monte Carlo programs. We do not drop terms, but

we should understand what happens in the leading color approximation.

In order to understand splitting in the leading color configuration, suppose that we

apply HI(t) to a state
∣∣{p, f, s′, c′, s, c}m

)
in which {c′} = {c}. Thus we consider the action
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Figure 9: Illustration of eq. (10.2). The first diagram shows the color configuration corresponding

to the operator G(i, j; {f̂}m+1): the gluon’s color is emitted from parton i and absorbed on gluon j.

Using eq. (7.24) to write this in terms of color basis states, one contribution is shown in the middle

diagram. This is the leading color contribution. Another contribution is shown in the right-hand

diagram. This contribution is subleading. If i and j had not been color connected to each other,

there would have been no contribution that survives in the leading color approximation.

of the color splitting operator G(i, j; {f̂}m+1), on a state
∣∣{c′, c}m

)
with {c′} = {c},

(
{ĉ′, ĉ}m+1

∣∣G(i, j; {f̂}m+1)
∣∣{c, c}m

)
=

D

〈
{ĉ}m+1

∣∣t†i (fi → f̂i + f̂m+1)
∣∣{c}m

〉

×
D

〈
{ĉ′}m+1

∣∣t†j(fj → f̂j + f̂m+1)
∣∣{c}m

〉∗
.

(10.1)

We first consider gluon emission. That is f̂m+1 = g. Then, after using eq. (8.25), all of the

contributions to HI(t)
∣∣ρ

)
come from G(i, j; {f̂}m+1) with i 6= j. In order to have a definite

case in mind, let us suppose that i and j are gluons. Then, using eq. (7.24) to represent the

t† operators in terms of the operators a† that insert the added gluon in particular places

in the string basis states, our matrix element becomes

CF

〈
{ĉ}m+1

∣∣a†+(i)
∣∣{c}m

〉 〈
{ĉ′}m+1

∣∣a†+(j)
∣∣{c}m

〉∗
+

CF

〈
{ĉ}m+1

∣∣a†−(i)
∣∣{c}m

〉 〈
{ĉ′}m+1

∣∣a†−(j)
∣∣{c}m

〉∗−
CF

〈
{ĉ}m+1

∣∣a†+(i)
∣∣{c}m

〉 〈
{ĉ′}m+1

∣∣a†−(j)
∣∣{c}m

〉∗−
CF

〈
{ĉ}m+1

∣∣a†−(i)
∣∣{c}m

〉 〈
{ĉ′}m+1

∣∣a†+(j)
∣∣{c}m

〉∗
.

(10.2)

Consider the case that gluon j is just to the right of gluon i along a color string. Then

if the new gluon is inserted to the right of gluon i, we get the same state as when the new

gluon is inserted to the left of gluon j. That is, the third term, with a†+(i) and a†−(j), gives

a non-zero matrix element when {ĉ′}m+1 = {ĉ}m+1. This contribution is thus kept in the

leading color approximation. The other three contributions would be thrown away in this

approximation. This is illustrated in figure 9.

Similarly, if gluon j is just to the left of gluon i along a color string, then the con-

tribution with a†−(i) and a†+(j) makes a leading color contribution, while the other three

contributions would be thrown away in the leading color approximation.

Suppose now that gluon j is not next to gluon i along a color string. Then all four

terms would be thrown away in the leading color approximation.

We can summarize this by saying that there is a term that is kept in the leading color

approximation when gluons i and j are “color connected”: next to each other along a color
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Figure 10: The starting diagram from figure 9 in the leading color approximation, in which gluons

are emitted from color dipoles. The i-j color dipole is a unit that emits a gluon and absorbs it on

the other side of the diagram. At the next stage there will be an i-(m + 1) color dipole and an

(m + 1)-j color dipole.

string. An analogous analysis leads to the same conclusion if one or both of partons i and

j are quarks.

One may say that in the leading color approximation, the operating units are color

dipoles, consisting of partons that are next to each other along a single color string. Within

this approximation, a gluon may be considered to carry the 3× 3̄ representation of SU(3)

instead of the 8 representation. Then, for instance, the 3̄ half of a gluon forms a dipole

with the 3 part of the neighboring gluon or with a neighboring quark. A dipole can emit

a gluon. But there is no interference between diagrams in which the gluon is emitted by

different dipoles. This is illustrated in figure 10. The color dipole picture was introduced

as the basis of the parton shower program Ariadne [28].

With the formalism presented in this paper, one can easily implement this approxima-

tion, but one can also keep corrections to it.

We have considered gluon emission. The case of a g → q+ q̄ splitting is rather different.

Then the contributing terms are from G(l, l; {f̂}m+1). For the operators t†l (g → q + q̄) in

eq. (10.1), we use eq. (7.35). In the leading term, with operator a†q(l), the color string

containing the gluon breaks at the position of the gluon, with the creation of two new

string ends. There is a second term, with operator a†s(l), in which gluon l simply disappears

from its string and a new q-q̄ string is created. However, the coefficient of a†s(l) is small

in the Nc → ∞ limit and would be dropped in the leading color approximation. In fact,

the coefficient of the leading a†q(l) is finite in the Nc → ∞ limit, instead of growing with

Nc. Thus g → q + q̄ splitting is color suppressed compared to g → g + g splitting. Some

of the color suppression is cancelled by the number of available qq̄ flavors. Parton shower

Monte Carlo programs normally include the leading term in g → q + q̄ splitting. With the

formalism presented in this paper, we can keep both terms in g → q + q̄ splitting.

11. Soft gluon coherence

When a soft gluon is emitted from the partons involved in a hard scattering, the angular

distribution of the emitted gluon reflects the structure of the emitting partons as a whole.
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In particular, a soft gluon emitted from a pair of colored partons at an angle that is

bigger than the angle between the partons effectively sees just one parton with the total

color charge of the pair. Since the splitting operator HI(t) coherently sums the leading

soft gluon singularities for emissions from a hard partonic system, including all of the

interference diagrams, soft gluon coherence is automatically included. It is of interest to

see how this happens and what form it takes in the color basis used in this paper.

Consider the matrix element of the splitting operator Sl for the case f̂m+1 = g,

as given in Eq. (8.26) with the default choice Alk = 1/2. There is a sum over in-

dices k ∈ {a,b, 1, . . . ,m} with k 6= l. There are two terms with different color factors,(
{ĉ′, ĉ}m+1

∣∣G(l, k; {f̂}m+1)
∣∣{c′, c}m

)
and

(
{ĉ′, ĉ}m+1

∣∣G(k, l; {f̂}m+1)
∣∣{c′, c}m

)
. These have

analogous structures, so it suffices to analyze one of them. The coefficient of the color

factor −
(
{ĉ′, ĉ}m+1

∣∣G(l, k; {f̂}m+1)
∣∣{c′, c}m

)
is

(
{ŝ′, ŝ}m+1

∣∣Wtot(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
≡

(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

−
(
{ŝ′, ŝ}m+1

∣∣W(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
.

(11.1)

The first term is from the square of the amplitude for emitting the gluon from parton

l. The second term represents the interference between the emission of gluon m + 1 from

parton l and the emission of this gluon from parton k. Let us evaluate this in the soft-gluon

approximation, V → V soft, as defined in eqs. (6.35) and (6.36). We can also approximate

p̂l ∼ pl and p̂k ∼ pk. With these replacements, we have

(
{ŝ′, ŝ}m+1

∣∣Wtot(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
∼

( ∏

j 6=m+1

δŝj ,sj
δŝ′j ,s′j

)
(4παs)

ε(p̂m+1, ŝm+1;Q)∗ ·pl

p̂m+1 ·pl

×
{

ε(p̂m+1, ŝm+1;Q)·pl

p̂m+1 ·pl
− ε(p̂m+1, ŝm+1;Q)·pk

p̂m+1 ·pk

}
.

(11.2)

There are singularities when p̂m+1 is collinear with pl and when p̂m+1 collinear with pk. The

singularity for p̂m+1 collinear with pk is not strong enough to give a logarithmic divergence

when we integrate over the direction of p̂m+1. The singularity for p̂m+1 collinear with pl is

strong enough to give a logarithmic divergence. Here, the leading singularity comes from

the first term, while the second term, representing the interference graph, gives only an

integrable collinear singularity.

When p̂m+1 is not close to being collinear with pl or pk, both terms are important.

However, suppose that the angle between pl and pk is small and that p̂m+1 makes an angle

with either of them that is substantially greater than this angle. Then the two contributions

approximately cancel each other. That is, soft gluon radiation associated with this color

factor is approximately confined to a cone about the directions of partons l and k with

opening angle on the order of the angle between pl and pk.

Thus there is approximate angular ordering of soft gluon emissions. One can also make

an exact statement about angular ordering [5]. If we sum over the spins of the soft gluon,
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we can use

∑

ŝm+1

εµ(p̂m+1, ŝm+1;Q)εν(p̂m+1, ŝm+1;Q)∗ = −gµν +
p̂µ

m+1Q
ν + Qµp̂ν

m+1

p̂m+1 ·Q
− Q2 p̂µ

m+1p̂
ν
m+1

(p̂m+1 ·Q)2
.

(11.3)

Then we can integrate over the azimuthal angle φ specifying the rotation of p̂m+1 about pl

in the rest frame of Q. This gives
∫

dφ

2π

∑

sm+1,ŝm+1

δsm+1,ŝm+1

(
{ŝ′, ŝ}m+1

∣∣Wtot(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
=


 ∏

j 6=m+1

δŝj ,sj
δŝ′

j
,s′

j


 (4παs) Isoft ,

(11.4)

where

Isoft =

∫
dφ

2π

pµ
l

p̂m+1 ·pl

{
pν

l

p̂m+1 ·pl
− pν

k

p̂m+1 ·pk

}

×
{
−gµν +

p̂µ
m+1Q

ν + Qµp̂ν
m+1

p̂m+1 ·Q
− Q2 p̂µ

m+1p̂
ν
m+1

(p̂m+1 ·Q)2

}
.

(11.5)

One can multiply this out and perform the integral using
∫

dφ

2π

1

A2 + B2 + 2AB cos φ
=

1

|A2 − B2| . (11.6)

This gives

Isoft =
Q·pl

pl ·p̂m+1 Q·p̂m+1

{
p̂m+1 ·ω ·pk βl√

(p̂m+1 ·ω ·pk)2 + m2(fk) (ω ·p̂m+1)2
+ 1

}
− m2(fl)

(pl ·p̂m+1)2
.

(11.7)

Here β is the velocity of parton l,

βl =

√
(pl ·Q)2 − m2(fl)Q2

pl ·Q
. (11.8)

We have written ω · v for the product ωµ
αvα of a vector v with the tensor ω defined by

ωµν =
Qµpν

l − pµ
l Qν

Q·pl
. (11.9)

The tensor β−1
l ωµν is the unit antisymmetric tensor in the pl-Q plane and projects onto

this plane. It obeys β−2
l ωµ

αωα
ν = Pµ

ν , where Pµ
ν is the projection operator onto the pl-Q

plane.

In the case that all of the masses are zero, eq. (11.7) becomes

Isoft =
Q·pl

pl ·p̂m+1 Q·p̂m+1

{
p̂m+1 ·ω ·pk√
(p̂m+1 ·ω ·pk)2

+ 1

}
(masses vanish) . (11.10)
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The ratio in the first term in eq. (11.10) is either +1 or −1. It is +1 if

p̂m+1 ·Q
p̂m+1 ·pl

>
pk ·Q
pk ·pl

. (11.11)

That is, the ratio is +1 if, in the rest frame of Q, p̂m+1 makes a smaller angle with pl than

does pk. In this small angle region, we have

Isoft =
2Q·pl

pl ·p̂m+1 Q·p̂m+1
(masses vanish, small angle) . (11.12)

In the wide angle region, where p̂m+1 makes a larger angle with pl than does pk, we have

Isoft = 0 (masses vanish, wide angle) . (11.13)

Thus, in the massless case, after a sum over spins and an average over the azimuthal angle,

the soft radiation outside a cone centered on pl and extending out to pk cancels exactly. This

phenomenon is known as angular ordering. It can be used to define the angular ordering

approximation, in which one simply neglects the radiation outside of this cone even for

a fixed set of spins and a fixed azimuthal angle. This angular ordering approximation is

commonly used in parton shower Monte Carlo event generators. With the formalism of

this paper, one can make this approximation if desired, but it is not required.

In the massive case, it is no longer true that soft radiation outside a cone centered on

pl and extending out to pk cancels after integrating over the azimuthal angle.

12. Inclusive evolution

As described in section 3.5, the Sudakov exponent is constructed from the operator V(t). In

turn, V(t) is constructed from
(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
, which tells the total probability

for the state
∣∣{p, f, s′, c′, s, c}m

)
to split at time t. In this section, we determine the structure

of
(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
.

We know the matrix elements of HI(t), so we simply insert the completeness rela-

tion (3.28) for the basis states and use eq. (3.44) for the inner product of
(
1
∣∣ with a basis

state. Thus

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
=

1

(m + 1)!

∫ [
d{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

]

×
〈
{ŝ′}m+1

∣∣{ŝ}m+1

〉 〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉

×
(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣HI(t)
∣∣{p, f, s′, c′, s, c}m

)
.

(12.1)

We use eq. (9.3) to express HI(t) in terms of a sum of splitting operators Sl and then use

eqs. (8.26) and (8.27) for the matrix elements of Sl. We encounter

1

(m + 1)!

∫ [
d{p̂, f̂}m+1

](
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m

)
· · ·

=
1

(m + 1)

∑

ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf)) · · · ,

(12.2)

– 64 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
4

where we have used eq. (8.20). Thus we are really integrating over the splitting variables.

Inside the integral and the sum over l, the variables {p̂, f̂}m+1 are determined from {p, f}m

and the splitting variables {ζf , ζf} by the transformation Rl, eqs. (4.28) and (4.63). Then

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
=

∑

l

∑

ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf))

× δ

(
t − log

(
Q2

0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

))

× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ
2
F )fb/B(ηb, µ2

F )

×
{

θ(f̂m+1 6= g)
〈
{c′}m

∣∣gll({f̂}m+1)
∣∣{c}m

〉〈
{s′}m

∣∣wll({f̂ , p̂}m+1)
∣∣{s}m

〉

+ θ(f̂m+1 = g)
∑

k 6=l

[〈
{c′}m

∣∣glk({f̂}m+1)
∣∣{c}m

〉

×
〈
{s′}m

∣∣Alk({p̂}m+1)wlk({f̂ , p̂}m+1) −
1

2
wll({f̂ , p̂}m+1)

∣∣{s}m

〉

+
〈
{c′}m

∣∣gkl({f̂}m+1)
∣∣{c}m

〉

×
〈
{s′}m

∣∣Alk({p̂}m+1)wkl({f̂ , p̂}m+1) −
1

2
wll({f̂ , p̂}m+1)

∣∣{s}m

〉]}
.

(12.3)

Here the color dependent function is

〈
{c′}m

∣∣gij({f̂}m+1)
∣∣{c}m

〉
=

∑

{ĉ′,ĉ}m+1

〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉

×
(
{ĉ′, ĉ}m+1

∣∣G(i, j; {f̂}m+1)
∣∣{c′, c}m

) (12.4)

and the spin dependent function is

〈
{s′}m

∣∣wij({f̂ , p̂}m+1)
∣∣{s}m

〉
=

∑

{ŝ′,ŝ}m+1

〈
{ŝ′}m+1

∣∣{ŝ}m+1

〉

×
(
{ŝ′, ŝ}m+1

∣∣W(i, j; {f̂ , p̂}m+1)
∣∣{s′, s}m

)
.

(12.5)

Let us look at the color factor in eq. (12.3) first. Using the definition (8.11) of

G(l, k; {f̂}m+1), we have

〈
{c′}m

∣∣gij({f̂}m+1)
∣∣{c}m

〉
=

∑

{ĉ′,ĉ}m+1

〈
{c′}m

∣∣tj(fj → f̂j + f̂m+1)
∣∣{ĉ′}m+1

〉
D

×
〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉
D

〈
{ĉ}m+1

∣∣t†i (fi → f̂i + f̂m+1)
∣∣{c}m

〉
.

(12.6)

Then using the completeness relations (3.23) and (3.24) we find

〈
{c′}m

∣∣gij({f̂}m+1)
∣∣{c}m

〉
=

〈
{c′}m

∣∣tj(fj → f̂j+f̂m+1) t†i (fi → f̂i+f̂m+1)
∣∣{c}m

〉
. (12.7)

The operator tjt
†
i is written as Tj · Ti in the work of Catani and Seymour on the dipole

subtraction scheme for next-to-leading order calculations [14]. In that work, there is a sum
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over final states, while in this paper we follow the evolution of the exclusive final state

that comes between the operators tj and t†i . We get back to the inclusive case when we

form
(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
. The operators gij have some simple properties. From the

definition eq. (7.20), we see that

〈
{c′}m

∣∣gij({f̂}m+1)
∣∣{c}m

〉
=

〈
{c′}m

∣∣gji({f̂}m+1)
∣∣{c}m

〉
. (12.8)

Furthermore, when i = j, the operators are proportional to the unit operator,

〈
{c′}m

∣∣gll({f̂}m+1)
∣∣{c}m

〉
=

〈
{c′}m

∣∣{c}m

〉
×





CF , {f̂l, f̂m+1} = {q, g} or {q̄, g}
CA , {f̂l, f̂m+1} = {g, g}
TR , {f̂l, f̂m+1} = {q, q̄}

.

(12.9)

The last of these cases occurs in eq. (12.3).

Let us look next at the spin dependent factor in eq. (12.3). In order to do this, we

need to introduce the possibility of averaging over the azimuthal angle of parton splitting.

For the splitting of parton l, we define the transverse part, q⊥ of p̂m+1 by

p̂m+1 = apl + bnl + q⊥ , (12.10)

where nl is the lightlike vector defined in eq. (5.3) and q⊥ · pl = q⊥ · nl = 0. We let φ

be the angle of q⊥ as measured in any convenient coordinate system, so that
∫

dφ means

integrating over q⊥ at fixed |q⊥|. Thus integrating over φ is part of integrating over the

splitting variables ζp.

Consider first the spin dependent factors for the case i 6= j, which arises from interfer-

ence diagrams. Using the definition (8.17) of W(i, j; {f̂ , p̂}m+1) and the orthogonality of

the spin basis vectors, this is

〈
{s′}m

∣∣wij({f̂ , p̂}m+1)
∣∣{s}m

〉
=

∑

{ŝ}m+1

〈
{s′}m

∣∣V soft
j ({p̂, f̂}m+1)

∣∣{ŝ}m+1

〉

×
〈
{ŝ}m+1

∣∣V †,soft
i ({p̂, f̂}m+1)

∣∣{s}m

〉
.

(12.11)

Using the definition (6.35) and (6.36) of V soft, this is

〈
{s′}m

∣∣wij({f̂ , p̂}m+1)
∣∣{s}m

〉

=
∑

{ŝ}m+1

(
∏

n∈{a,b,1,...,m}

δŝn,sn
δŝn,s′n

)
(4παs)

× ε(p̂m+1, ŝm+1;Q)∗ ·p̂i

p̂m+1 ·p̂i

ε(p̂m+1, ŝm+1;Q)·p̂j

p̂m+1 ·p̂j

=

(
∏

n∈{a,b,1,...,m}

δsn,s′n

)
(4παs)

∑

ŝm+1

ε(p̂m+1, ŝm+1;Q)∗ ·p̂i

p̂m+1 ·p̂i

ε(p̂m+1, ŝm+1;Q)·p̂j

p̂m+1 ·p̂j

=
〈
{s′}m

∣∣{s}m

〉
(4παs)

∑

ŝm+1

ε(p̂m+1, ŝm+1;Q)∗ ·p̂i

p̂m+1 ·p̂i

ε(p̂m+1, ŝm+1;Q)·p̂j

p̂m+1 ·p̂j
.

(12.12)
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Notice that
〈
{s′}m

∣∣wij({f̂ , p̂}m+1)
∣∣{s}m

〉
is proportional to a unit matrix

〈
{s′}m

∣∣{s}m

〉
in

the spin indices and that it is symmetric under i ↔ j. The coefficient of
〈
{s′}m

∣∣{s}m

〉
is a

product of splitting functions vsoft
i and vsoft ∗

j as defined in eq. (6.36), summed over ŝi and

ŝj and averaged over si and sj. That is

〈
{s′}m

∣∣wij({f̂ , p̂}m+1)
∣∣{s}m

〉
=

〈
{s′}m

∣∣{s}m

〉
wij({f̂ , p̂}m+1) , (12.13)

where wij is

wij({f̂ , p̂}m+1) = wji({f̂ , p̂}m+1)

=
1

4

∑

ŝm+1

∑

ŝi

∑

si

∑

ŝj

∑

sj

vsoft
j ({p̂, f̂}m+1, ŝm+1, ŝj , sj)

∗ vsoft
i ({p̂, f̂}m+1, ŝm+1, ŝi, si) .

(12.14)

Consider next the case i = j = l ∈ {1, . . . ,m} with f̂l 6= g or with l = a or b and any

f̂l. Using the definition (8.12) of W(l, l; {f̂ , p̂}m+1) and orthogonality for the spin basis

vectors, this is

〈
{s′}m

∣∣wll({f̂ , p̂}m+1)
∣∣{s}m

〉
=

∑

{ŝ}m+1

Sl({f̂}m+1)
〈
{s′}m

∣∣Vl({p̂, f̂}m+1)
∣∣{ŝ}m+1

〉

×
〈
{ŝ}m+1

∣∣V †
l ({p̂, f̂}m+1)

∣∣{s}m

〉
.

(12.15)

Using the definition of V as given in eq. (6.6), this is

〈
{s′}m

∣∣wll({f̂ , p̂}m+1)
∣∣{s}m

〉
=

∑

{ŝ}m+1

(
∏

n/∈{l,m+1}

δŝn,sn
δŝn,s′n

)
Sl({f̂}m+1)

× v∗l ({p̂, f̂}m+1, ŝm+1, ŝl, s
′
l) vl({p̂, f̂}m+1, ŝm+1, ŝl, sl)

=
∑

ŝm+1

∑

ŝl

(
∏

n/∈{l,m+1}

δs′n,sn

)
Sl({f̂}m+1)

× v∗l ({p̂, f̂}m+1, ŝm+1, ŝl, s
′
l) vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) .

(12.16)

This is proportional to the unit matrix in the spin indices sn, s′n for all n except possibly

for sl, s
′
l, the indices that appear in the functions vl. However, in eq. (12.3) there is an

integration over the azimuthal angle φ as part of the integration over ζp. Once we sum

over the final state spin indices ŝl, ŝm+1 and integrate over φ, the result is invariant under

rotations about the pl axis in the rest frame of Q. Thus the result must vanish for sl 6= s′l.

In addition, the parity invariance of the splitting vertices implies that the result is invariant

under a reflection through a plane containing pl, Q, and any vector transverse to pl and

Q. Under this transformation, sl ↔ −sl and s′l ↔ −s′l. Thus the result is proportional to

δsl,s
′

l
. The coefficient of the δsl,s

′

l
can be obtained by setting s′l → sl, summing over sl, and
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multiplying by 1/2. Thus

∫
dφ

2π

〈
{s′}m

∣∣wll({f̂ , p̂}m+1)
∣∣{s}m

〉
=

∫
dφ

2π

(
m∏

n=1

δs′n,sn

)
1

2

∑

ŝm+1

∑

ŝl

∑

s̄l

Sl({f̂}m+1)

× v∗l ({p̂, f̂}m+1, ŝm+1, ŝl, s̄l) vl({p̂, f̂}m+1, ŝm+1, ŝl, s̄l)

=
〈
{s′}m

∣∣{s}m

〉
Sl({f̂}m+1)

× 1

2

∑

ŝm+1

∑

ŝl

∑

s̄l

∣∣vl({p̂, f̂}m+1, ŝm+1, ŝl, s̄l)
∣∣2 .

(12.17)

In the last line, we have not written the average over φ because, once we have summed

over all of the spins, the result is independent of φ.

For the special case i = j = l ∈ {1, . . . ,m} with f̂l = g, there is an extra term in the

definition (8.12) of W(l, l; {f̂ , p̂}m+1). The extra term, involving W̃ defined in eq. (8.16),

is built from some of the separate terms in the three gluon vertex. Their treatment is

essentially the same as the treatment just given for the other vertex functions. The result

for i = j = l in general is

∫
dφ

2π

〈
{s′}m

∣∣wll({f̂ , p̂}m+1)
∣∣{s}m

〉
=

〈
{s′}m

∣∣{s}m

〉
wll({f̂ , p̂}m+1) , (12.18)

where

wll({f̂ , p̂}m+1) = Sl({f̂}m+1)
1

2

∑

ŝm+1

∑

ŝl

∑

sl

×
{∣∣vl({p̂, f̂}m+1, ŝm+1, ŝl, sl)

∣∣2

+ θ(l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g)

×
[
|v2,l({p̂, f̂}m+1, ŝm+1, ŝl, sl)|2 − |v3,l({p̂, f̂}m+1, ŝm+1, ŝl, sl)|2

]}
.

(12.19)

Here v2,l and v3,l are defined in eq. (8.14).

We conclude that
(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
has the form given in eq. (3.49),

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
= 2

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
. (12.20)

It is proportional to the unit matrix in spin but is not proportional to the unit matrix, or
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even diagonal, in color. The matrix
〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
is

〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
=

1

2

∑

l

∑

ζf∈Φl(fl)

∫
dζp θ(ζp ∈ Γl({p}m, ζf))

× δ

(
t − log

(
Q2

0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 − m2(fl)|

))

× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ2

F )

fa/A(ηa, µ2
F )fb/B(ηb, µ2

F )

×
{

θ(f̂m+1 6= g)
〈
{c′}m

∣∣{c}m

〉
TR wll({f̂ , p̂}m+1)

+ θ(f̂m+1 = g)
∑

k 6=l

〈
{c′}m

∣∣glk({f̂}m+1)
∣∣{c}m

〉

×
[
2Alk({p̂}m+1)wlk({f̂ , p̂}m+1) − wll({f̂ , p̂}m+1)

]}
.

(12.21)

Here
〈
{c′}m

∣∣gij({f̂}m+1)
∣∣{c}m

〉
is given in eq. (12.7) while wij({f̂ , p̂}m+1) for i 6= j is given

in eq. (12.14) and wll({f̂ , p̂}m+1) is given in eq. (12.19). The scales µF used in the parton

distribution functions and µR used in αs are given by eq. (9.4). Inside the integral and the

sum over l, the variables {p̂, f̂}m+1 are determined from {p, f}m and the splitting variables

{ζp, ζf} by the transformation Rl, eqs. (4.28) and (4.63).

Notice that the matrix
〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
is not diagonal in color. However,

the matrix elements with {c′}m 6= {c′}m are suppressed by powers of 1/Nc. For the term

with a factor
〈
{c′}m

∣∣{c}m

〉
, this was already noted in eq. (7.14). To see this for the term

involving glk, we should write the matrix element of glk in the form of eq. (12.6),

〈
{c′}m

∣∣glk({f̂}m+1)
∣∣{c}m

〉
=

∑

{ĉ′,ĉ}m+1

D

〈
{ĉ′}m+1

∣∣t†k(fk → f̂k + f̂m+1)
∣∣{c′}m

〉

×
〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉
D

〈
{ĉ}m+1

∣∣t†l (fl → f̂l + f̂m+1)
∣∣{c}m

〉
.

(12.22)

The leading contribution for 1/Nc → 0 comes when {c′}m = {c}m and partons l and k are

color connected: they lie next to each other on a string. As discussed in section 10, we

can use the representations (7.24), (7.25), (7.26), and (7.35) for the operators t†l and t†k to

see that the action of t†l and t†k can produce {ĉ′}m+1 = {ĉ}m+1. If {c′}m 6= {c}m, then the

action of t†l and t†k always produces {ĉ′}m+1 6= {ĉ}m+1, so that we get a color suppressed

inner product
〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉
.

13. End of the shower

As the shower progresses toward smaller and smaller resolution scales µ2 = Q2
0e

−t, there

must come a point at which the perturbative basis of the evolution equation is no longer

valid. Then, at some evolution time tf , the shower evolution should be stopped. In the event

that the resolution scale of the desired measurement function is larger than µ2
f = Q2

0e
−tf ,
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whatever happens beyond that is not seen by the measurement. Then one could simply

apply the measurement function, calculating

(
F

∣∣ρ(tf)
)

. (13.1)

Let us suppose that the measurement function does not see the spins or colors of the final

state partons. Then, as in eq. (3.34), we need

(
F

∣∣ρ(tf)
)

=
∑

m

1

m!

∫ [
d{p, f, s′, c′, s, c}m

]
F ({p, f}m)

〈
{s′}m

∣∣{s}m

〉〈
{c′}m

∣∣{c}m

〉

×
(
{p, f, s′, c′, s, c}m

∣∣ρ(tf)
)

.

(13.2)

It is significant that, although the possibility of {c′}m 6= {c}m is included in the shower

evolution presented in this paper, the matrix
〈
{c′}m

∣∣{c}m

〉
is almost diagonal, with off-

diagonal matrix elements being suppressed by factors of 1/N2
c . The situations with respect

to spins and colors are different. In the end, we must have {s′}m = {s}m exactly. However,

the spins get shuffled at each stage of shower evolution and there is no reason that a

state with {s′}m 6= {s}m at an earlier stage of evolution cannot evolve into a state with

{s′}m = {s}m at the end. On the other hand, color differences between {c′}m and {c}m

are a little like entropy. Once {c′}m 6= {c}m at an early stage of evolution, we can never

get {c′}m = {c}m at the end. For this reason, the most important part of color evolution

is the part that maintains {c′}m = {c}m throughout. This is evolution in the leading color

dipole approximation.

Now, what if we wish to use a measurement function with a resolution scale smaller

than µ2
f . Then we need a model for what happens at smaller resolution scales (or later

and earlier proper times than given by x2 ∼ 1/µ2
f ). Our model should certainly include

hadronization. We can easily extend the formalism presented here to encompass hadroniza-

tion. We have only to replace
(
F

∣∣ρ(tf)
)

by

(
Fh

∣∣U(∞, tf)
∣∣ρ(tf)

)
. (13.3)

Here U(∞, tf) represents a model for what happens after Monte Carlo time tf . It starts with

partonic states and maps them into the space of hadronic states. Typically the hadronic

states are labeled by momenta and hadronic flavors but not spins. Then
(
Fh

∣∣ represents

the measurement function in the space of hadronic states. For purposes of discussing the

partonic shower, we can denote

(
Fh

∣∣U(∞, tf) =
(
Feff

∣∣ . (13.4)

Thus Feff is the true hadronic measurement function translated back to the partonic level.

Assuming that the hadronization model does not use color or spin information, the

measured cross section then takes the form
(
Fh

∣∣U(∞, tf)
∣∣ρ(tf)

)
=

(
Feff

∣∣ρ(tf)
)

=
∑

m

1

m!

∫ [
d{p, f, s′, c′, s, c}m

]
Feff ({p, f}m)

×
〈
{s′}m

∣∣{s}m

〉〈
{c′}m

∣∣{c}m

〉(
{p, f, s′, c′, s, c}m

∣∣ρ(tf)
)

.

(13.5)
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Typically, hadronization models do use color information. The color field interact-

ing with the outgoing partons is represented as a classical color string. The string then

fragments into hadrons. This applies directly in Pythia [2] and in a different way in Her-

wig [1], where the color strings fragment into color singlet parton clusters immediately.

The formalism of this paper is set up with the color string picture in mind. The color states

{c}m exactly map onto string configurations, as explained in section 7.1. Thus for terms in

eq. (13.5) with {c′}m = {c}m, one can use {c}m as the input to the hadronization model.

The string model does not tell us what to do with {c′}m 6= {c}m. A reasonable suggestion

would be to use {c′}m half the time and {c}m half the time. This could be represented as

(
Fh

∣∣U(∞, tf)
∣∣ρ(tf)

)
=

∑

m

1

m!

∫ [
d{p, f, s′, c′, s, c}m

]

× 1

2

[
Feff({p, f, c}m) + Feff({p, f, c′}m)

]

×
〈
{s′}m

∣∣{s}m

〉〈
{c′}m

∣∣{c}m

〉(
{p, f, s′, c′, s, c}m

∣∣ρ(tf)
)

.

(13.6)

If the hadronization model is based on strings, one needs to do something with the

string ends that connect to the initial state partons. Consider, for example, the case that

the hard collision at scale µ2
f is a quark-quark collision and concentrate on one of the initial

state quarks. From the point of view of backwards evolution from the scale Q2
0, this initial

state quark appears as a color 3 line. The initial state quark is part of a colorless hadron,

but the net color 3 is carried by the spectator quarks from this hadron. Thus in a color

string model, the color strings from the hard interactions should connect to the spectator

partons. Of course, this is not a completely simple problem. In a realistic model, the

spectator partons from the two hadrons have many interactions with each other, possibly

followed by their own (not very hard) parton showers. After all of these interactions, the

spectator partons left over from a quark-quark collision must have 3 ⊗ 3 color, but its

internal color state can be quite complicated. Modeling the spectator interactions is well

beyond the scope of this paper but is addressed by Sjöstrand and Skands in ref. [12].

14. Conclusions

We have presented a formulation of parton showering for hadron-hadron collisions. The

prediction for a cross section corresponding to an observable F is given by
(
F

∣∣ρ(tf)
)

or one

of the other formulas in section 13, depending on the treatment of hadronization, which

is not covered in this paper. The dynamics of the quantum density
∣∣ρ(t)

)
is given by the

evolution operator U(t, t′), so that
∣∣ρ(tf)

)
= U(tf , 0)

∣∣ρ(0)
)
, where

∣∣ρ(0)
)

is determined from

the hard matrix element that starts the shower. Thus the shower dynamics represented

in U(t, t′) is based on factorization of soft and collinear singularities from hard scattering.

The basic formula is eq. (3.56), which we can rewrite as

U(tf , t
′) = N (tf , t

′) +

∫ tf

t′
dτ U(tf , τ) [HI(τ) − VS(τ)]N (τ, t′) . (14.1)

Here HI(t) is a parton splitting operator, as defined in the preceding sections and VS(t)

represents a virtual interaction that interchanges colors. The operator N (τ, t′) generates
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quantity equation uses

U(t, t′) Eq. (3.56) HI, N , VS

HI(τ) Eq. (9.3) Sl

V(t, {p, f}m) Eq. (3.53) h

VS(t, {p, f}m) Eq. (3.61) V, VE

VE(t, {p, f}m) Eq. (3.60) h

N (t, t′) Eq. (3.57) VE

h(t, {p, f}m) Eq. (12.21) gij , wlk, Alk

gij({f̂}m+1) Eq. (12.6) t†l , color basis

wij({f̂ , p̂}m+1) Eqs. (12.14, 12.19) vsoft
i , vl, vJ,l

t†l (fj → f̂j + f̂m+1) Eqs. (7.24)–(7.26), (7.35) a†+, a†−, a†q, a†s

a†+, a†−, a†q, a†s Eq. (7.15)–(7.18) color basis

color basis Sec. 7.1

Sl Eq. (8.23) S(l)
ij , Alk

S(l)
ij Eq. (8.10) G, W, Pl

G(i, j; {f̂}m+1) Eq. (8.11) t†i , color basis

W(l, l; {f̂ , p̂}m+1) Eq. (8.12) Sl, V †
l , W̃

W(i, j; {f̂ , p̂}m+1) Eq. (8.17) V †,soft
i

W̃(l, l; {p̂}m+1) Eq. (8.16) VJ,l

V †
J,l({p̂, f̂}m+1) Eq. (8.15) vJ,l

vJ,l({p̂, f̂}m+1, ŝm+1, ŝl, sl) Eq. (8.14)

Sl({f̂}m+1) Eq. (8.6)

V †
l ({p̂, f̂}m+1) Eq. (6.6) vl

vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) Table 1

Eqs. (6.31), (6.32)

V †,soft
l ({p̂, f̂}m+1) Eq. (6.35) vsoft

l

vsoft
l ({p̂, f̂}m+1, ŝm+1, ŝl, sl) Eq. (6.36)

Pl Eq. (8.18) Ql

Ql({p̂, f̂}m+1) Sec. 4∫ [
d{p, f}m

]
Eq. (3.15)

Alk({p}m+1) Sec. 8

Table 2: Key formulas.

the standard sort of Sudakov exponential that gives the probability not to have an inter-

action between shower times t′ and τ . We provide table 2 to indicate where the various

functions needed to compute U can be found.

Eq. (14.1) has the proper form to conveniently generate a parton shower. Starting with

a state at time t′, one would use N (τ, t′) to determine the time τ for a parton splitting (or

color rearrangement). Possibly there is no splitting before the cutoff time tf , as represented

by the first term. Otherwise, the operators HI(τ) and VS(τ) give a new partonic state at

time τ . Now we operate with U(tf , τ), which is to say that we apply this procedure again.
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We offer here concluding remarks under several headings.

Implementation. Equation (14.1), together with the formulas in section 13 and the

definitions given throughout this paper, represents a certain approximation for the cross

section σ[F ] corresponding to a given observable F . When eq. (14.1) is iterated, the result

is expressed in the form of certain integrals and sums. It will be a significant challenge to

find ways to implement eq. (14.1) in a manner that allows an efficient calculation of σ[F ].

We expect that there is more than one way to attack this problem. The choice affects the

efficiency of calculation, but not the result, σ[F ]. We leave implementation issues to later

work.

Evolution variable. We have chosen the evolution variable t to be proportional to

the virtuality in the splitting. An alternative would be the transverse momentum in the

splitting. The Herwig choice of the splitting angle does not work well with the formalism

presented here since a parton emitted at a fixed angle can be arbitrarily soft, necessitating

introducing the final hardness cutoff µ2
f at each splitting.

Momentum mapping. It is not kinematically possible for an on-shell parton to split

into two on-shell partons. However, it is useful to approximate the mother parton as being

exactly on-shell in calculating the (relatively) hard scattering in which the mother parton

participates. To make this approximation, we need to take the needed momentum from

somewhere else. Sometimes this is done by taking momentum from the mother’s sister in

the previous splitting. In the Catani-Seymour subtraction scheme for doing next-to-leading

order calculations, there is a “spectator parton” that donates the required momentum [14].

Rather than taking momentum from a single parton that might not have much to give, we

have chosen to take a little momentum from each final state parton, with each donating

according to how much momentum it has. Note that we keep momentum in balance at

each step, rather than waiting until the end of the shower to make adjustments.

Common evolution. In eq. (14.1), each parton has a chance to split or interchange

colors between shower times t and t + dt. In the very simplest form of a parton shower,

each parton could evolve independently, at least if one ignores momentum conservation

and adjusts the momenta only at the end. Then the complete evolution of each parton l

could be traced out without keeping track of the other partons. Effectively, there could be a

separate time tl for each parton. However, independent evolution could still be implemented

using a common evolution variable t, giving each parton its chance to split between times

t and t + dt. The physical distinction that characterizes independent evolution is that the

evolution is independent if the various functions involved in the splitting of parton l do

not involve the states of the other partons. With the definitions of the operators used

in eq. (14.1), the use of a common shower time variable is required, since each splitting

changes the whole partonic state and affects the probabilities for other partons to split at

later shower times.

Other choices. Within eq. (14.1), there are quite a number of other choices required.

For instance, the splitting functions must have a particular form in the limits of soft and
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collinear splittings. However, away from these limits there is a certain freedom to choose.

Where choices like this were needed, we exercised the freedom to choose based mostly on

conceptual simplicity. Other authors might choose differently.

Interference and angular ordering. In eq. (14.1), quantum interference between emis-

sions of a gluon from different partons is treated exactly in the soft gluon limit. Suppression

of wide angle emissions is a result. Typically, parton shower generators make an “angular

ordering” approximation to this result. Once one has an implementation of eq. (14.1), it

will be interesting to make the standard angular ordering approximation and see how good

an approximation it is.

Spin. Partons produced in a hard scattering carry spin, which can affect the angular

distribution of their subsequent splittings. Eq. (14.1) includes the full spin information.

Typically, parton shower generators average over spins, thus discarding this information.

Once one has an implementation of eq. (14.1), it will be interesting to insert spin averages

everywhere and see how good an approximation it is.

Color. Partons produced in a hard scattering carry color, which can affect the pattern of

future splittings. The formalism presented here includes the full color information. Typi-

cally, parton shower generators make use of a leading color approximation that amounts to

taking the first term in an expansion about 1/Nc = 0. Once one has an implementation of

eq. (14.1), it will be interesting to make the leading color approximation everywhere and

see how good an approximation it is.

Improvements needed. We leave for future work the question of how one could match

the parton shower to the exact matrix elements for 2 → n scattering instead of simply

starting with 2 → 2 scattering. We also leave for future work the question of how one

could do this at next-to-leading order. (See, however, ref. [19].) More ambitiously, we

would like to extend the whole formalism, including the splitting functions, to next-to-

leading order. Current work by others on soft-collinear effective theory may be helpful

here [29].

Masses. We gave included quark masses in our momentum mappings and splitting func-

tions. However, there are a number of issues associated with masses that we do not address.

Suppose that we start with a hard scattering at a scale Q0 that is much larger than the

mass of the bottom quark, mb.
27 Suppose additionally that we want to continue evolution

down to a scale µ that is less than mb. Then we need a suitable variable flavor number

scheme. At the leading order used in this paper, this is easy enough, but at higher orders

of perturbation theory there are some subtle issues. Collins [30] has addressed some of

these issues as they arise in deeply inelastic scattering. One should, however, note that

for hadron-hadron collisions, the power suppressed terms that are omitted when the cross

section is written in a factored form as a hard scattering function convoluted with parton

27Here we assume that the bottom quark is the heaviest quark counted as initial state parton. One could

include production of top quarks, but would not include the top quark as a constituent of the proton unless

Q0 ≫ mt.
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distributions are not of order Λ2
QCD/Q2

0 but rather of order m2
b/Q

2
0 [31]. This is not a

problem since, in the applications we have in mind, m2
b/Q2

0 ≪ 1. We lack a theorem to

tell us what to do if we want to keep the hard scattering but lower the resolution scale to

µ2 < m2
b so as to examine the final state in more detail.

Foundations. The formalism presented here is based on ideas of factorization, both at

the amplitude level and at the cross section level, where summation over partonic states

that are unresolved at a given scale µ2 is essential. As the discussion of masses makes clear,

more work is needed to make these ideas sufficiently precise to justify the formalism.

Acknowledgments

We are grateful to J. Collins, M. Seymour, P. Skands, and Z. Trócsányi for helpful conver-
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A. Limit on momentum fraction after splitting

In section (4.4) we defined the kinematics of initial state splitting. For a collinear splitting

from an initial state parton, say parton “a,”, we have η̂a > ηa. It is not exactly evident

that this holds in away from the collinear limit, especially with masses. Here we show that

this holds under the kinematic conditions (3.6) and (3.9).

Let

ĝ(η̂a) = (p̂a + pb)
2

= η̂aηbs + m2(f̂a) + m2(fb) +
m2(f̂a)m2(fb)

η̂aηbs
,

g(ηa) = (pa + pb)
2

= ηaηbs + m2(fa) + m2(fb) +
m2(fa)m2(fb)

ηaηbs
.

(A.1)

Note that ĝ(η̂a) is an increasing function of its argument in the allowed region of momentum

fractions:

1

ηbs

dĝ(η̂a)

dη̂a
= 1 −

(
m(f̂a)m(fb)

η̂aηbs

)2

> 0 , (A.2)

since η̂aηbs > m2
H in our allowed kinematic region according to eq. (3.9). Since ĝ(η̂a) is an

increasing function, we just need to show that ĝ(η̂a) > ĝ(ηa).

Recall that the kinematics requires

ĝ(η̂a) = (K̂ + pm+1)
2 ,

g(ηa) = K2 ,
(A.3)
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where K̂2 = K2. Thus

ĝ(η̂a) − ĝ(ηa) = ĝ(η̂a) − g(ηa) + g(ηa) − ĝ(ηa)

= (K̂ + pm+1)
2 − K2 + g(ηa) − ĝ(ηa)

= 2K̂ · pm+1 + m2(f̂m+1)

+
(
m2(fa) − m2(f̂a)

) [
1 +

m2(fb)

ηaηbs

]
.

(A.4)

We need to show that the right hand side of eq. (A.4) is positive. If m(fa)
2 ≥ m(f̂a)

2,

this is evident. There is only one case in which m2(fa) < m2(f̂a). That is when we have a

q → qg or q̄ → q̄g splitting in which the quark (or antiquark) enters the final state and the

gluon enters the hard scattering. Then m2(f̂m+1) = m2(f̂a) and m2(fa) = 0. In that case,

ĝ(η̂a) − ĝ(ηa) = 2K̂ · pm+1 − m2(f̂a)
m2(fb)

ηaηbs

> 2K̂ · pm+1 − m2(f̂a) ,

(A.5)

where we have used ηaηbs > m2(fb) from eq. (3.9). The minimum value of K̂ ·pm+1 occurs

when pm+1 is proportional to K̂. Then K̂ · pm+1 = m(f̂a)
√

K2, so

ĝ(η̂a) − ĝ(ηa) > m(f̂a)
(
2
√

K2 − m(f̂a)
)

> m(f̂a)

(
2
√

Q2
0 − m(f̂a)

)
. (A.6)

This is positive as long as the condition (3.6) holds.

We have seen that

ĝ(η̂a) > ĝ(ηa) . (A.7)

Since ĝ(η̂a) is an increasing function of η̂a, this implies that η̂a > ηa.

B. Counting factors for the density matrix

In this appendix, we organize the singular contributions to the density matrix starting with

the quantum amplitudes defined to be symmetric in the labels of the final state partons

(or antisymmetric in the case of identical fermions). Then we introduce the relabelings

that define our labeling scheme for parton splittings. This produces the counting factors

Sl({f̂}m+1) defined in eq. (8.6). The counting factors are related to our parton labeling

choices, which in turn related to the singularities of the amplitude in the limit in which

masses can be neglected. The counting factors do not depend on parton masses. In order to

keep our notation simple, in this appendix we simply take all the parton masses to vanish.

Let
∣∣M({p̂, f̂}m+1)

〉
be the exact tree level matrix element for a final state of m + 1

partons, defined to be symmetric under the interchange of the labels for any two of the

final state partons, or antisymmetric if the two partons are identical fermions. The matrix

element may have a singularity when any of the dot products of two parton momenta,

p̂i · p̂j , approaches zero. Let us define approximate matrix elements
∣∣M({p̂, f̂}m+1; i, j)

〉

that approximate the complete matrix element when p̂i ·p̂j, approaches zero. Here i ∈ {a,b}
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and j ∈ {1, . . . ,m + 1} or i, j ∈ {1, . . . ,m + 1} with i < j. There is more than one way

to do this. We can, for instance, use the method of section 6. The approximate matrix

elements
∣∣M({p̂, f̂}m+1; i, j)

〉
thus defined should include a theta function

θ

(
|p̂i ·p̂j | < min

{k,l}6={i,j}
{k,l}6={j,i}

|p̂k ·p̂l|
)

(B.1)

so that
∣∣M({p̂, f̂}m+1; i, j)

〉
is not singular when pk · pl for some other pair of partons

approaches zero. Given the approximate matrix elements, the complete matrix element

can be written as

∣∣M({p̂, f̂}m+1)
〉
∼

m+1∑

j=1

∣∣M({p̂, f̂}m+1; a, j)
〉

+
m+1∑

j=1

∣∣M({p̂, f̂}m+1; b, j)
〉

+

m+1∑

i,j=1
i<j

∣∣M({p̂, f̂}m+1; i, j)
〉

.

(B.2)

The right hand side of eq. (B.2) approximates the complete matrix element in any of the

singular limits. For our purposes, it is convenient to define

∣∣M({p̂, f̂}m+1; i, j)
〉

=
∣∣M({p̂, f̂}m+1; j, i)

〉
(B.3)

for i, j ∈ {1, . . . ,m + 1}, i > j. Then we can symmetrize the third term in eq. (B.2),

∣∣M({p̂, f̂}m+1)
〉
∼

m∑

j=1

∣∣M({p̂, f̂}m+1; a, j)
〉

+

m∑

j=1

∣∣M({p̂, f̂}m+1; b, j)
〉

+
1

2

m+1∑

i,j=1
i6=j

∣∣M({p̂, f̂}m+1; i, j)
〉

.

(B.4)

Now we construct the density operator from

ρ0({p̂, f̂}m+1) =
∣∣M({p̂, f̂}m+1)

〉〈
M({p̂, f̂}m+1)

∣∣ . (B.5)

Imagine expanding both
∣∣M({p̂, f̂}m+1)

〉
and

〈
M({p̂, f̂}m+1)

∣∣ according to eq. (B.4). There

are a number of terms, with the general form

const. ×
∣∣M({p̂, f̂}m+1; i, j)

〉〈
M({p̂, f̂}m+1; i

′, j′)
∣∣ . (B.6)

Not all of these contributions have soft or collinear singularities strong enough to produce

a logarithmic divergence if one were to integrate over the momenta {p̂}m+1.

One contribution that does have a strong enough singularity comes when i, j, i′, j′ ∈
{1, . . . ,m + 1} and i′ = i, j′ = j or i′ = j, j′ = i. The sum of these contributions is

1

2

m+1∑

i,j=1
i6=j

∣∣M({p̂, f̂}m+1; i, j)
〉〈

M({p̂, f̂}m+1; i, j)
∣∣ , (B.7)
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where we have used eq. (B.3).

Another contribution that has a strong enough singularity comes when i = i′ = a and

j, j′ ∈ {1, . . . ,m+1} with j′ = j. Similarly, we can have i = i′ = b and j, j′ ∈ {1, . . . ,m+1}
with j′ = j. The sum of these contributions is

m+1∑

j=1

∣∣M({p̂, f̂}m+1; a, j)
〉〈

M({p̂, f̂}m+1; a, j)
∣∣+

m+1∑

j=1

∣∣M({p̂, f̂}m+1; b, j)
〉〈

M({p̂, f̂}m+1; b, j)
∣∣.

(B.8)

Another contribution that does have a strong enough singularity comes when i, j, i′, j′ ∈
{1, . . . ,m+1} and i′ = i, j′ 6= j or else j′ = j, i′ 6= i or else i′ = j, j′ 6= i or else j′ = i, i′ 6= j.

These four cases are really the same, with different labeling. Adding the contributions, we

have
m+1∑

i,j=1
i6=j

m+1∑

k=1
k 6=i , k 6=j

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣ . (B.9)

Here we have a leading singularity only if f̂k = g. This is the interference between gluon

emission from line i and gluon emission from line j.

We can also have interference between gluon emission from an initial state line and

gluon emission from a final state line or between gluon emission from one of the initial

state lines and gluon emission from the other. When we add all of these cases together and

add them to the contribution in eq. (B.9), we get

∑

i,j∈{a,b,...,m+1}
i6=j

m+1∑

k=1
k 6=i , k 6=j

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣ . (B.10)

There are no more combinations of i, j, i′, j′ that give leading singular contributions to

ρ. Thus the sum of the leading singular contributions is obtained by adding the contribu-

tions (B.7), (B.8), and (B.10).

This formulation is fine for constructing an inverse shower, starting from a state with

many partons and combining partons to reach a hard scattering with fewer partons. In

order to construct a shower starting from the hard scattering, it is convenient to adopt

a labeling convention in which ρ({p̂, f̂}m+1) is not symmetric under interchanges of the

parton labels. This is easy to do.

Consider the contribution (B.7). Using the i ↔ j symmetry of the matrix elements,

this is

m∑

i=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; i,m + 1)
∣∣

+
1

2

m∑

i=1

m∑

j=1
j 6=i

∣∣M({p̂, f̂}m+1; i, j)
〉〈

M({p̂, f̂}m+1; i, j)
∣∣.

(B.11)
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We can now deliberately break the relabeling symmetry in the second term by interchanging

the labels j and m + 1. That is, we choose to label the daughter parton that here caries

the label j by m + 1 instead. Note that this changes ρ({p̂, f̂}m+1) for any fixed value

of {p̂, f̂}m+1. However, the result of integrating ρ({p̂, f̂}m+1) against any measurement

function (which must be symmetric under label interchanges) stays the same. After the

interchange j ↔ m + 1, the sum over j in the second term simply becomes a factor m− 1.

This gives

m∑

i=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; i,m + 1)
∣∣

+
m − 1

2

m∑

i=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; i,m + 1)
∣∣ .

(B.12)

This is
m + 1

2

m∑

i=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; i,m + 1)
∣∣; . (B.13)

We now consider the possibilities for flavors: {f̂i, f̂m+1} could be {g, g}, {g, q}, {g, q̄}, {q, g},
{q̄, g}, {q, q̄}, and {q̄, q}, where q stands for a quark flavor, q̄ stands for an antiquark flavor,

and a q together with a q̄ stands for a quark flavor and its corresponding antiquark flavor.

Thus we can insert a factor

1 = θ
(
{f̂i, f̂m+1} = {g, g}

)

+ θ
(
{f̂i, f̂m+1} = {g, q}

)
+ θ

(
({f̂i, f̂m+1} = {g, q̄}

)

+ θ
(
{f̂i, f̂m+1} = {q, g}

)
+ θ

(
{f̂i, f̂m+1} = {q̄, g}

)

+ θ
(
{f̂i, f̂m+1} = {q, q̄}

)
+ θ

(
{f̂i, f̂m+1} = {q̄, q}

)
.

(B.14)

In the coefficients of the {g, q} and {g, q̄} theta functions, we can further define the labeling

by interchanging the labels i and m + 1, so that m + 1 is the label for the gluon. In the

{q̄, q} term, we can further define the labeling by interchanging the labels i and m + 1, so

that m + 1 is the label for the antiquark. With these label choices, our contribution is

(m + 1)

m∑

l=1

Sl({f̂}m+1)
∣∣M({p̂, f̂}m+1; l,m + 1)

〉〈
M({p̂, f̂}m+1; l,m + 1)

∣∣ , (B.15)

where

Sl({f̂}m+1) =





1/2 , l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g

1 , l ∈ {1, . . . ,m}, f̂l 6= g, f̂m+1 = g

0 , l ∈ {1, . . . ,m}, f̂l = g, f̂m+1 6= g

1 , l ∈ {1, . . . ,m}, f̂l = q, f̂m+1 = q̄

0 , l ∈ {1, . . . ,m}, f̂l = q̄, f̂m+1 = q

. (B.16)

We thus derive the factor (m + 1) and the factor 1/2 for a final state g → g + g splitting.

Consider now the contribution (B.8). We can break the relabeling symmetry by inter-

changing the labels j and m + 1. Then there are m + 1 equal terms, giving

(m + 1)
∑

l∈{a,b}

Sl({f̂}m+1)
∣∣M({p̂, f̂}m+1; l,m + 1)

〉〈
M({p̂, f̂}m+1; l,m + 1)

∣∣ ,
(B.17)
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where

Sl({f̂}m+1) = 1 l ∈ {a,b} . (B.18)

Consider, finally, the interference diagrams, eq. (B.10). We separate this into several

terms according to the values of i and j,

∑

i,j∈{a,b}
i6=j

m+1∑

k=1

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣

+
∑

i∈{a,b}

m∑

j=1

m+1∑

k=1
k 6=j

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣

+
m∑

i=1

∑

j∈{a,b}

m+1∑

k=1
k 6=i

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣

+
∑

i∈{a,b}

m∑

k=1

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1;m + 1, k)
∣∣ (B.19)

+
∑

j∈{a,b}

m∑

k=1

∣∣M({p̂, f̂}m+1;m + 1, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣

+

m∑

j=1

m∑

k=1
k 6=j

∣∣M({p̂, f̂}m+1;m + 1, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣

+
m∑

i=1

m∑

k=1
k 6=i

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1;m + 1, k)
∣∣

+

m∑

i,j=1
i6=j

m+1∑

k=1
k 6=i , k 6=j

∣∣M({p̂, f̂}m+1; i, k)
〉〈

M({p̂, f̂}m+1; j, k)
∣∣ .

We relabel the indices, treating each term separately. In each case, we interchange k ↔
m + 1. In the first term, this gives m + 1 equal terms from the sum over k. In the second

and third terms, this gives m equal terms from the sum over k. In the fourth through

seventh terms, each term in the sum over k remains as one term. Finally, in the eighth

term, there are m − 1 equal terms from the sum over k. After relabeling, we have

(m + 1)
∑

i,j∈{a,b}
i6=j

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣

+ m
∑

i∈{a,b}

m∑

j=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣

+ m

m∑

i=1

∑

j∈{a,b}

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣
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+
∑

i∈{a,b}

m∑

k=1

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; k,m + 1)
∣∣ (B.20)

+
∑

j∈{a,b}

m∑

k=1

∣∣M({p̂, f̂}m+1; k,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣

+
m∑

j=1

m∑

k=1
k 6=j

∣∣M({p̂, f̂}m+1; k,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣

+

m∑

i=1

m∑

k=1
k 6=i

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; k,m + 1)
∣∣

+ (m − 1)

m∑

i,j=1
i6=j

∣∣M({p̂, f̂}m+1; i,m + 1)
〉〈

M({p̂, f̂}m+1; j,m + 1)
∣∣ .

These terms can be combined, after changing the names of some of the summation

indices, and added to the contributions (B.15) and (B.17) to give the revised density

operator, which we can call ρ1,

ρ1({p̂, f̂}m+1) =

(m + 1)
∑

l∈{a,b,1,...,m}

Sl({f̂}m+1)
∣∣M({p̂, f̂}m+1; l,m + 1)

〉〈
M({p̂, f̂}m+1; l,m + 1)

∣∣

+ (m + 1)
m∑

l,k∈{a,b,1,...,m}
l 6=k

∣∣M({p̂, f̂}m+1; l,m + 1)
〉〈

M({p̂, f̂}m+1; k,m + 1)
∣∣ .

(B.21)

The first line here contains the direct terms, eqs. (B.15) and (B.17), while the second line

is the interference terms, eq. (B.20).
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